Background. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coatings using XRD, FESEM, and EDS showing a unique phase of coating metals over their substrates with obvious homogeneous even deposition. A highly significant positive correlation was found between sputtering time and thickness of the achieved coatings. AFM revealed a reduction in the surface roughness of 316L SS substrates sputtered with all coating materials, significantly seen in V coatings. Conclusions. Sputtering time and coating material play a significant role in terms of microstructure and topography of the achieved coatings being the best in the Ta group; moreover, surface roughness was significantly improved by V coatings. Likewise, it is found to be sputtering time independent for all used coatings.
In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreThe aim of this work was to capture solar radiation and convert it into solar thermal energy by using a storage material and the heat transfer fluid like oil and water and comparison between them, we used the evacuated tube as a receiver for solar radiation, The results showed that the oil better than water as storage material and the heat transfer fluid and the effective thermal conductivity material and good for power level, rates and durations of charge and discharge cycles.
This study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreElectrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c
... Show MoreBackground: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium
... Show MoreDental implants are considered a unique treatment alternative for the replacement of missing dentition. There is a strive for materials which increase bone formation in bone implant interface and improve osseointegration to offer immediate loading directly after placement with decreased time. The aim of the study was to assess the effect of nano strontium substituted hydroxyapatite and nano fluorapatite mixture coating of screw shaped commercially pure titanium at the bone implant interface by torque removal test and histological assessment in rabbit tibia. Commercially pure titanium was used to prepare 80 screws that were divided into machined surfaces (CpTi), coated with (SrHA), coated with (FA) and coated with mixture 50%SrHA + 50%FA (mi
... Show MoreThe implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of
... Show MoreAn experimental study was carried out for an evaporative cooling system in order to investigate the effect of using an aluminum pad coated with fabric polyester. In the present work, it was considered to use a new different type of cooling medium and test its performance during the change in the wet-bulb temperature and dry-bulb temperature of the supply air outside of the pad, the relative humidity of the supply air, the amount of air supplied (300-600) CFM and also the change of the amount of circulated water (1.75, 2.5, 4.5) liter per minute. A decrease in the WBT of the air was obtained, whereas the WBT of the air entering the pad was 26.5 . In contrast, the WBT of the outside air had reached 23 even though eva
... Show More