In this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis study identified the genus Coelastrella Chodat, 1922 which was isolated from a sediment sample taken from the Tigris river in Baghdad Governorate, Iraq. The alga was isolated and cultured in modified Chu 10 media and the morphological features of the isolated algae were observed in light microscopy (LM); it showed some characteristic features of this genus, such as its ellipsoidal or lemon- shaped cells, a visible pyrenoid and the chloroplast parietal. To ensure correct identification of the isolated alga, a molecular analysis using 18S rRNA gene and DNA sequencing revealed a match with C. terrestris (Reisigl) Hedewald & N. Hanagata 2002. This species is a new record in Iraq
... Show MoreA new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThis paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MorePatients with decompensated cirrhosis have typically prescribed a combination of therapeutic and prophylactic medications. Polypharmacy increases the probability of medication errors and drug related problems. Clinical pharmacists are highly effective at identifying, resolving, and preventing clinically important drug-related problems in their patients' care. The objectives of the study were the identification and classification of drug-related problems, as well as the discussion of these problems with health care providers (physicians, pharmacists, and nurses) and patients. Reduce their incidence as effectively as possible and educate all research participants on the significance of following their prescribed drug regimen
... Show More