Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreIn this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinami
... Show More