Preferred Language
Articles
/
dRcwe48BVTCNdQwCkHle
Characterization of flow cytometric immuno-phenotyping of acute myeloid leukemia with minimal differentiation and acute T-cell lymphoblastic leukemia: A retrospective cross-sectional study
...Show More Authors

Background: Acute leukemias (ALs) are a heterogeneous group of malignancies with various clinical, morphological, immunophenotypic, and molecular characteristics. Distinguishing between lymphoid and myeloid leukemia is often performed by flow cytometry. This study aimed to evaluate the immunophenotypic characterization and expression of immuno-markers in both acute myeloid leukemia (AML-M0) and acute T-cell lymphoblastic leukemia (T-ALL).

Methods: A retrospective cross-sectional study was conducted in the Pathology Department/Teaching Laboratories/Medical City/Iraq and included all patients newly diagnosed with AL from 5 January to 10 December 2018. Immunophenotypic analysis was performed on bone marrow samples, freshly collected in EDTA tubes. Flow cytometry (Canto-2 BD) was used, with laser excitation of blue and red wavelengths. A panel of monoclonal antibodies (MoAbs) was used for diagnosis, using a SSC/CD45 gating strategy.

Results: The study showed 41.6% of AML-M0 patients had no aberrant antigen expression, while 33.3%, 16.6%,  8.3%, and 8.3% had aberrant CD7, CD56, CD2, and CD19, respectively. In 16.6% of AML-M0 cases more than one aberrant antigen was expressed. With regard to T-ALL, 7.0% were pro-T type, 58.0% were pre-T, 13.0% were cortical, and 22.0% were mature-T type. In 55.5% of patients with T-ALL there was no aberrant antigen expression.

Conclusion: We concluded that most patients with AML-M0 have no aberrant antigen expression. In patients with T-ALL, the pre-T type is most common, according to the European Group for the Immunological Classification of Leukemias (EGIL) classification. Patients with T-ALL also generally lack aberrant antigen expression.

Scopus Crossref
View Publication
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fibrewise Multi-Perfect Topological Spaces
...Show More Authors

The essential objective of this paper is to introduce new notions of fibrewise topological spaces on D that are named to be upper perfect topological spaces, lower perfect topological spaces, multi-perfect topological spaces, fibrewise upper perfect topological spaces, and fibrewise lower perfect topological spaces. fibrewise multi-perfect topological spaces, filter base, contact point, rigid, multi-rigid, multi-rigid, fibrewise upper weakly closed, fibrewise lower weakly closed, fibrewise multi-weakly closed, set, almost upper perfect, almost lower perfect, almost multi-perfect, fibrewise almost upper perfect, fibrewise almost lower perfect, fibrewise almost multi-perfect, upper* continuous fibrewise upper topol

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 10 2025
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Techniques
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-

... Show More
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Technique
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref