The azo Schiff base [Reaction of 4-aminoanypyrine and P-hydroxy acetophenone] and O-Phenylene diamine have been prepared. One azo Schiff base chelate of Co(Il), Ni(II), Cu(II) and Zn(II)ion was also prepared. The chemical frameworks of the azo Schiff base and like elemental analyses (CHN), determinations of molar conductance, 1 H &13C NMR, IR mass and electronic spectroscopy .The elemental analyses exhibited the combination of [L: M] 1:1 ratio. Established on the values IR spectral, it is showed that the azo Schiff base compound acts as neutral hexadentate ligand bonded with the metal ion from two hydroxyl, two azomethine and two azo groups of the azo Schiff base compound in chelation was confirmed by IR , 1Hand 13CNMR spectral outcomes. The UV-Vis spectral values appeared the existence of π→π* (phenyl ring), n→π* (N=N, -OH and HC=N) and an octahedral structure was suggested for the coordinate. The mass spectral outcomes assured the purity of the ligand. Furthermore, the antimicrobial and antifungal efficacy results revealed that the metal complexes were found to be more active than the free ligand. In general the activity order of the synthesized compounds can be represented as Fe (II) > Cu (II) > Ni (II) > Zn (II) > Co (II) > L.
Some new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4- ylimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) –one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phisco- chemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ?E*, ?H, ?S, ?G and K are calculated from the TGA curves using Coa
... Show MoreSchiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Coupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show MoreTrimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used
A new synthesis of Schiff (K) 6 and Mannich bases (Q) 7 had formed compound (Q) 7 by reacting compound (K) with N-methylaniline at the presence of formalin 35% to given Mannich base (Q). Additionally, new complexes were formed by reacting Schiff base (K) with metal salts CuCl2·2H2O, PdCl2·2H2O, and PtCl6·6H2O by 2:1 of M:L ratio. New ligands and their complexes were characterized, exanimated, and confirmed through several techniques, including FTIR, UV-visible, 1H-NMR, 13C-NMR spectroscopy, CHN analysis, FAA, TG, molar conductivity, and magnetic susceptibility. These compounds and their complexes were screened against breast cancer cells. It was determined that several of these compounds had a significant anti-breast cancer effec
... Show MoreTwo Schiff base ligands L1 and L2 have been obtained by condensation of salicylaldehyde respectively with leucylalanine and glycylglycine then their complexes with Zn(II)were prepared and characterized by elemental analyses , conductivity measurement , IR and UV-Vis .The molar conductance measurement indicated that the Zn(II) complexes are 1:1 non-electrolytes. The IR data demonstrated that the tetradentate binding of the ligands L1 and L2 . The in vitro biological screening effect of the investigated compounds have been tested against the bacterial species Staphlococcus aureus, Escherichia coil , Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by the disc diffusion method . A comparative study of inhibition values of
... Show MoreI've been in this work to prepare some complexes containing mixed Kandat with some transitional elements which new complexes according to the best of our knowledge and to refer to the information from the Internet until I have been studying this diagnosis Aalmakdat
New metal complexes of some transition metal ions Co(II), Cu(II) , Cd(II) and Zn(II) were prepared by their reaction with previously prepared ligands HLI= (P-methyl anilino) phenyl acetonitrile and HLII = (P-methyl anilino) –P– chloro phenyl acetonitrile . The two ligands were prepared by Strecker’s procedure which includ the reaction of p- toluidine with benzaldehyde and P- chlorobenzaldehyde respectively. Structures were proposed depending on atomic absorption , i.r. and u.v.visible spectra in addition to magnetic susceptibility and electrical conductivity measurements.
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show More