Preferred Language
Articles
/
dRb3DIcBVTCNdQwCszNx
Response of Damaged Reinforced Concrete Beams Strengthened with NSM CFRP Strips
...Show More Authors

This paper presents a study (experimentally) for strengthening reinforced concrete (RC) beams with Near-Surface-Mounted (NSM) technique. The use of this technique with CFRP strips or rebars is an efficient technology for increasing the strength for flexure and shear or for repairing damaged reinforced concrete (RC) members. The objective of this research is to study, experimentally, RC beams either repaired or strengthened with NSM CFRP strips and follow their flexural behavior and failure modes. NSM-CFRP strips were used to strengthen three RC beam specimens, one of them was initially strengthened and tested up to failure. Four beam specimens have been initially subjected to preloading to 50% and 80% of ultimate load. Two of the specimens were either repaired or strengthened with NSM-CFRP strips. All the repaired/strengthened pre-damaged beams have been tested up to failure by using compression-testing machine. An appropriate-scale model was adopted. All the specimens have a cross-sectional dimension of 150 mm with an effective span of 110 mm. Depends on the experimental results, a better performance of the strengthened concrete specimens was obtained in both strength and serviceability. As a comparison with the control beam specimen, all the repaired specimens show a very good increase of about 40% in the load-carrying capacity and a high improvement in resistance to cracking of about 120% in NSM. On the other hand, the test results of NSM CFRP-strengthened concrete specimens with a preloading of 50% and 80% of the ultimate load show an increase of about 9% to 20% in the load-carrying capacity, for 50% and 80% pre-loading, respectively an improvement in deflection of about 2% to 27% in NSM, for 80% and 50% pre-loading, respectively.

Crossref
View Publication
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref