Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide membership and nonmembership degrees freely, simulate real-world ambiguity efficiently, utilize a narrow fuzzy number space, and deal with interval data. Thus, this study used a more efficient fuzzy environment interval-valued linear Diophantine fuzzy set (IVLDF) with FWZIC II for criterion weighting and IVLDF with FDOSM for DAS modeling to address the issues and support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. The proposed methodology comprises two consecutive phases. The first phase involves adapting a decision matrix that intersects DAS alternatives and criteria. The second phase (development phase) proposes a decision modeling approach based on formulation of IVLD-FWZIC II and IVLD-FDOSM II to model DASs. A total of 14 DASs were modeled on the basis of 15 DAS criteria, including seven subcriteria for “comprehensive complexity assessment” and eight subcriteria for “design and implementation,” which had a remarkable effect on the DAS design when implemented by industrial communities. Systematic ranking, sensitivity analysis, and modeling checklists were conducted to demonstrate that the modeling results were subject to systematic ranking, as indicated by the high correlations across all described scenarios of changing criterion weight values, supporting the most important research points, and proposing a value-adding process in modeling the most desirable DAS.
We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
Abstract
The objective of the research is to identify the role of innovative leadership in achieving the dimensions of administrative empowerment in the company for the public of food industries. The various variables have shown the importance of innovative leadership to achieve the dimensions of administrative empowerment in both international and local companies. Administrative Empowerment "In order to answer this question, a virtual model was developed to reflect the relationship and impact between innovative leadership and administrative empowerment. The research was based on the analytical descriptive approach. the research community, The company represented the general company for food industries, retrie
... Show More