Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide membership and nonmembership degrees freely, simulate real-world ambiguity efficiently, utilize a narrow fuzzy number space, and deal with interval data. Thus, this study used a more efficient fuzzy environment interval-valued linear Diophantine fuzzy set (IVLDF) with FWZIC II for criterion weighting and IVLDF with FDOSM for DAS modeling to address the issues and support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. The proposed methodology comprises two consecutive phases. The first phase involves adapting a decision matrix that intersects DAS alternatives and criteria. The second phase (development phase) proposes a decision modeling approach based on formulation of IVLD-FWZIC II and IVLD-FDOSM II to model DASs. A total of 14 DASs were modeled on the basis of 15 DAS criteria, including seven subcriteria for “comprehensive complexity assessment” and eight subcriteria for “design and implementation,” which had a remarkable effect on the DAS design when implemented by industrial communities. Systematic ranking, sensitivity analysis, and modeling checklists were conducted to demonstrate that the modeling results were subject to systematic ranking, as indicated by the high correlations across all described scenarios of changing criterion weight values, supporting the most important research points, and proposing a value-adding process in modeling the most desirable DAS.
This study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreBack ground: Zygote produce from once a sperm fertilizes an egg cell. Then, the zygote (unicellular) will begin chain of cellular cleavages to produce multicellular mass, its embryo, the differentiated to different tissues and organism. The development of the embryo is called embryogenesis. Coenzyme Q10, is an antioxidant produced in the body. It boosts cellular energy and may enhance the immune system. CoQ10 is present and measurable in seminal fluid, the concentration of CoQ10 directly correlates with both sperm count and motility. It is beneficial in the prevention and treatment a wide range of health problems. Objectives: The present study was aimed to investigate the possibility of using coenzyme Q10 to improve in vitro fertilization (
... Show MoreThis article reviews the technical applicability of nanofiltration membrane process for the removal of nickel, lead, and copper ions from industrial wastewater.
Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50, 100, 150 and 200 ppm), under different pressures (1, 2, 3 and 4 bar), temperatures (10, 20, 30 and 40 oC), pH (2, 3, 4, 5 and 5.5), and flow rates (1, 2, 3 and 4 L/hr), were prepared and subjected treated by NF systems in the laboratory. Suitable NF membrane was chosen after testing a number of NF membranes (University of Technology-Baghdad), in terms of production and removal. NF system was capable of removing more than (85%, 78%, and 66% for Ni(II
... Show MoreKE Sharquie, AA Noaimi, MM Al-Salih, Saudi Medical Journal, 2008 - Cited by 56
Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreAn efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols i
... Show More