Preferred Language
Articles
/
dRZzcokBVTCNdQwCXomo
A Decision Modeling Approach for Data Acquisition Systems of the Vehicle Industry Based on Interval-Valued Linear Diophantine Fuzzy Set

Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide membership and nonmembership degrees freely, simulate real-world ambiguity efficiently, utilize a narrow fuzzy number space, and deal with interval data. Thus, this study used a more efficient fuzzy environment interval-valued linear Diophantine fuzzy set (IVLDF) with FWZIC II for criterion weighting and IVLDF with FDOSM for DAS modeling to address the issues and support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. The proposed methodology comprises two consecutive phases. The first phase involves adapting a decision matrix that intersects DAS alternatives and criteria. The second phase (development phase) proposes a decision modeling approach based on formulation of IVLD-FWZIC II and IVLD-FDOSM II to model DASs. A total of 14 DASs were modeled on the basis of 15 DAS criteria, including seven subcriteria for “comprehensive complexity assessment” and eight subcriteria for “design and implementation,” which had a remarkable effect on the DAS design when implemented by industrial communities. Systematic ranking, sensitivity analysis, and modeling checklists were conducted to demonstrate that the modeling results were subject to systematic ranking, as indicated by the high correlations across all described scenarios of changing criterion weight values, supporting the most important research points, and proposing a value-adding process in modeling the most desirable DAS.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Short Text Semantic Similarity Measurement Approach Based on Semantic Network

Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
Scopus (20)
Crossref (9)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
MVSCA: Multi-Valued Sequence Covering Array

This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the

... Show More
Scopus (45)
Crossref (35)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Generation of True Random TTL Signals for Quantum Key-Distribution Systems Based on True Random Binary Sequences

A true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Electronics
Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems

Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
SDN-assisted Service Placement for the IoT-based Systems in Multiple Edge Servers Environment

Edge computing is proved to be an effective solution for the Internet of Things (IoT)-based systems. Bringing the resources closer to the end devices has improved the performance of the networks and reduced the load on the cloud. On the other hand, edge computing has some constraints related to the amount of the resources available on the edge servers, which is considered to be limited as compared with the cloud. In this paper, we propose Software-Defined Networking (SDN)-based resources allocation and service placement system in the multi-edge networks that serve multiple IoT applications. In this system, the resources of the edge servers are monitored using the proposed Edge Server Application (ESA) to determine the state of the edge s

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
The International Journal Of Nonlinear Analysis And Applications
Improved optimality checkpoint for decision making by using the sub-triangular form

Decision-making in Operations Research is the main point in various studies in our real-life applications. However, these different studies focus on this topic. One drawback some of their studies are restricted and have not addressed the nature of values in terms of imprecise data (ID). This paper thus deals with two contributions. First, decreasing the total costs by classifying subsets of costs. Second, improving the optimality solution by the Hungarian assignment approach. This newly proposed method is called fuzzy sub-Triangular form (FS-TF) under ID. The results obtained are exquisite as compared with previous methods including, robust ranking technique, arithmetic operations, magnitude ranking method and centroid ranking method. This

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces

The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators  are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit  where linear operator from complete standard fuzzy normed space  into a standard fuzzy normed space  then  belongs to the set of all fuzzy bounded linear operators

... Show More
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF