<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. This study presents a hybrid greedy hill climbing algorithm (HGHC) that ensures both effectiveness and near-optimal results for generating a small number of test data. To make certain that the suggested HGHC outperforms the most used techniques in terms of test size. It is compared to others in order to determine its effectiveness. In contrast to recent practices utilized for the production of covering arrays (CAs) and mixed covering arrays (MCAs), this hybrid strategy is superior since allowing it to provide the utmost outcome while reducing the size and limit the loss of unique pairings in the CA/MCA generation.</p>
Modern education incorporates strong elements of collaborative learning: activities that prompt students to collaborate on completing learning tasks. In this work we investigate the relationship between media type and student collaboration and attribution patterns during collaborative content creation. We run similarity analyses on text and video artifacts submitted by students as part of collaborative exercises in an undergraduate module. Our main finding is that the same cohort of students was significantly more likely to attribute non-original content to its sources when authoring text compared to video content and when this content is not produced by a peer student. Our preliminary results based on only two media suggest that media type
... Show MoreIn this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
There has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show More