Bismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray pattern (D1) matching that of card of COD File-No-96-152-6459 indicating the presence of homogeneous Bi2O3NPs, Scaning Electron Microscopy (SEM) displayed shaped monoclinic phase with average diameter 30.28 nm. The size, structure and composition of synthetic Bi2O3 Nps were determined using the (EDX) pattern. The XRD pattern (D2) corresponds to JCPDS File No. 27-50. The SEM of D2 showed crystalline rhomobohedrral phase with average diameter 34.89 nm. The EDX for both (D1, D2) samples reveals an aggregation of thin sheet cluster. The antibacterial activity of Bi2O3NPs from (D1, D2) was tested against (G-) Escherichia coli and (G+) staphylococcus aureus. All of these clinical pathogens were examined for antifungal activity against Candida albicans fungus, and the results were compared with the standard medication. The adsorption experiment was successfully conducted on the following metal ions (M+2 = Co, Ni and Cu), where the results proved removal simultaneously from water using Bi2O3NPs (D1, D2) based on the affinity of three metal ions and Bi2O3 NPs surface shape. The removal efficiencies of mixed (M+2 = Co, Ni and Cu) ions for D1 were 89.68%, 85.56% and 94.5%. The removal efficiencies for D2 were 93.3%, 87.7% and 88.54%, respectively.
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreThe Wheat husk is one of the common wastes abundantly available in the Middle East countries especially in Iraq. The present study aimed to evaluate the Wheat husk as low cost material, eco-friendly adsorbents for the removal of the carcinogenic dye (Congo red dye) from wastewater by investigate the effect of, at different conditions such as, pH(3-10), amount of adsorbents (1-2.3gm/L),and particle size (125-1000) μm, initial Congo red dye concentration(10, 25 , 50 and 75mg/l) by batch experiments. The results showed that the removal percentage of dye increased with increasing adsorbent dosage, and decreasing particle size. The maximum removal and uptake reached (91%) , 21.5mg/g, respectively for 25 initial concent
... Show MoreViscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system
Diode laser technology is well established for biomedicine applications which demand high-power pulse-wave. They are extensively utilized from medical imaging and testing to surgical therapies and the latest aesthetic processes. For medical therapeutic practices, diode lasers have become the ideal laser source for this particular purpose. In the last previous years, semiconductor laser technology has evolved to produce high-repetitions rate near-infrared pulsed lasers diodes that are dependable, low-cost, portable, and small-weight, about few grams. In this paper, we review the recent development and demonstration of diode laser devices for biomedical applications recorded in the latest years taking into account the power, wavelength, and p
... Show MoreIn this study, Cobalt Oxide nanostructure was successfully prepared using the chemical spray pyrolysis technique. The cobalt oxide phase was analysed by X-ray Diffraction (XRD) and proved the preparation of two cobalt oxide phases which are Co3O4 and CoO phases. The surface morphology was characterized by Scanning Electron Microscope (SEM) images showing the topography of the sample with grain size smaller than 100 nm. The optical behavior of the prepared material was studied by UV-Vis spectrophotometer. The band gap varied as 1.9 eV and 2.6 eV for Co3O4 prepared from cobalt sulphate precursor, 2.03 eV and 4.04 eV for Co3O4 prepared from cobalt nitrate precursor, 2.04 eV and 4.01 eV for CoO prepared from cobalt chloride precursor where th
... Show MoreIn this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated