Bismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray pattern (D1) matching that of card of COD File-No-96-152-6459 indicating the presence of homogeneous Bi2O3NPs, Scaning Electron Microscopy (SEM) displayed shaped monoclinic phase with average diameter 30.28 nm. The size, structure and composition of synthetic Bi2O3 Nps were determined using the (EDX) pattern. The XRD pattern (D2) corresponds to JCPDS File No. 27-50. The SEM of D2 showed crystalline rhomobohedrral phase with average diameter 34.89 nm. The EDX for both (D1, D2) samples reveals an aggregation of thin sheet cluster. The antibacterial activity of Bi2O3NPs from (D1, D2) was tested against (G-) Escherichia coli and (G+) staphylococcus aureus. All of these clinical pathogens were examined for antifungal activity against Candida albicans fungus, and the results were compared with the standard medication. The adsorption experiment was successfully conducted on the following metal ions (M+2 = Co, Ni and Cu), where the results proved removal simultaneously from water using Bi2O3NPs (D1, D2) based on the affinity of three metal ions and Bi2O3 NPs surface shape. The removal efficiencies of mixed (M+2 = Co, Ni and Cu) ions for D1 were 89.68%, 85.56% and 94.5%. The removal efficiencies for D2 were 93.3%, 87.7% and 88.54%, respectively.
In this work, prepared new ligand[3- (1H-indol-3-yl) -2- (3-(4- methoxybenzoyl)thiouereido) propanoic acid](MTP) has been synthesized by reaction of 4-Methoxybenzoyl isothiocyanate with tryptophane(1:1), The ligand was characterized by elemental microanalysis C.H.N.S, FT-IR, UV-Vis and 1H,13C NMR spectra, Some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(MTP)2] (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg), the proposed geometrical structure for all complexes were tetrahedral except copper complex has a square planer geometry around metallic ion
... Show MoreA series of metal ion complexes of some divalent transition metal ions having the general composition [ML2Cl2]nH2O with 2-(benzo[d]thiazol-2-ylamino)-2- (5-chloro-2-hydroxy phenyl) acetonitrile ligand has been prepared from 5-chloro-2-hydroxy-benzaldehyde and benzo[d]thiazol-2-amine. Existence of cyanide as potassium cyanide in acidic medium was considered, characterized by elemental chemical analysis, conductance of molarity, magnetic susceptibility measurements, FTIR electronic spectral studies and mole ratio method. FTIR indicates the participation of amino and acetonitrile nitrogen which is coordinated with the central metal ion.
The study aimed to prepare a nanocapsules formulation from the acetonic extract of Moringa oleifera leaves, using polymeric capsules, and test its toxicity against the third instar larvae of Culex pipiens mosquitoes. The leaf extract was prepared using acetone as a solvent, and the nano polymeric capsules were prepared using the synthetic polymer polyethylene glycol 4000. The results showed the successful preparation of nano polymeric capsules from the leaf extract, with an average particle size of 259.2 nm, and a nanocapsule diameter of 263.83 nm, as determined by DLS and SEM analysis, respectively. The toxicity results indicated that the nano polymeric capsules of the leaf extract exhibited higher mortality rates, reaching 97.6% a
... Show MoreAir pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin
... Show MoreNear-ideal p-CdS/n-Si heterojunction band edge lineup has been investigated for the first time with aid of I-V and C-V measurements. The heterojunction was manufactured by deposition of CdS films prepared by chemical spray pyrolysis technique (CSP) on monocrystalline n-type silicon. The experimental data of the conduction band offset Ec and valence band offset Ec were compared with theoretical values. The band offset Ec=530meV and Ev=770meV obtained at 300K. The energy band diagram of p-CdS/n-Si HJ was constructed. C-V measurements depict that the junction was an abrupt type and the built-in voltage was determined from C-2-V plot
Peer-Reviewed Journal
Objective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show More