This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently, the beams that exposed to be cool gradually under the ambient laboratory condition, after that, the beams were loaded till failure to investigate the influence of the heating temperature on the performance during the serviceability and the failure stage. It was observed that, as the temperature increased in the internal layers of concrete, the camber of tested beams increased significantly and attained its peak value at the end of the time interval of the stabilization of the heating temperature. This can be attributed to the extra time that was consumed for the heat energy to migrate across the cross-section and to travel along the span of the beam and deteriorate the texture of the concrete causing microcracking with a larger surface area. Experimental findings showed that the load-carrying capacity of the test specimen, with the same number of incorporated concrete segments, was significantly decreased as the heating temperature increased during the fire event.
For the time being, the cold-formed sections are widely used due to their simple manufacturing and construction processes. To be feasible, the strength of cold-formed columns should be determined based on their post-buckling behavior. Post-buckling relations are cumbersome and need design aids similar to those of American Iron and Steel Institute (AISI) to be applicable. These design aids have been developed to sections and materials other than those available in the local market. Therefore, this paper tries to develop a general finite element model to simulate the postbuckling behavior of cold-formed steel columns. Shell element has been used to discretize the web, flanges, and lips of the column. A linear bucking analy
... Show MoreThis paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreBack ground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), Time and the mode of polymerization (dual, self-cured) of the cements used on the bond strength between translucent fiber post and root dentin by using push-out test. Materials and Methods: Forty eight extracted mandibular first premolars (single root) were instrumented with ProTaper Universal system files (for hand use) and obturated with gutta percha for ProTaper and AH26® root canal sealer following the manufacturer instructions, after 24 hours post space was prepared using FRC postec® plus drills no.3 creating 8 mm depth post space. The prepared samples were randomly divided into two main groups (24 samples ea
... Show MoreMany researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreWarfarin dosing is challenging due to a multitude of factors affecting its pharmacokinetics (PK) and pharmacodynamics (PD). A novel personalised dosing algorithm predicated on a warfarin PK/PD model and incorporating CYP2C9 and VKORC1 genotype information has been developed for children. The present prospective, observational study aimed to compare the model with conventional weight-based dosing. The study involved two groups of children post-cardiac surgery: Group 1 were warfarin naïve, in whom loading and maintenance doses were estimated using the model over a 6-month duration and compared to historical case-matched controls. Group 2 were already established on maintenance therapy a
The purpose of this study is to avoid delays and cost changes that occur in emergency reconstruction projects especially in post disaster circumstances. This study is aimed to identify the factors that affect the real construction period and the real cost of a project against the estimated period of construction and the estimated cost of the project. The case study is related to the construction projects in Iraq. Thirty projects in different areas of construction in Iraq were selected as a sample for this study. Project participants from the projects authorities provided data about the projects through a data collection distributed survey made by the authors. Mathematical data analysis was used to construct a model to predict change
... Show MoreAims: This study aims to compare patients’ complaints and problems of wearing complete dentures.
Methodology: The sample included 40 Iraqi patients who are wearing complete dentures from about five years ago. They
were selected randomly with a age range between (55–65) years. The questions asked to the patients were listed according
to the recent classification of post-insertion problems.
Result: The results showed that the percentage of patient's complaint from adaptation problems (62.1%) was higher than
looseness problems (61.3%) and discomfort problems (39.3%) as followed.
Recommendation: Dentists need thorough knowledge of anatomy, physiology, pathology and psychology. The assessing
of the psyche and emotions
This study presents the findings of a 3D finite element modeling on the performance of a single pile under various slenderness ratios (25, 50, 75, 100). These percentages were assigned to cover the most commonly configuration used in such kind of piles. The effect of the soil condition (dry and saturated) on the pile response was also investigated. The pile was modeled as a linear elastic, the surrounded dry soil layers were simulated by adopting a modified Mohr-Coulomb model, and the saturated soil layers were simulated by the modified UBCSAND model. The soil-pile interaction was represented by interface elements with a reduction factor (R) of 0.6 in the loose sand layer and 0.7 in t