Reactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and 90 days. The outcomes of the experimental works improved that using porcelain aggregate as a partial replacement had an advanced effect on the compressive strength for all the adopted percentages and for all the studied curing ages. The maximum modification that’s obtained in case of porcelain aggregate was (24.14) % at age (90) days for 20% replacement. Using glass waste caused an increase in the overall values of the compressive strength for all the adopted replacements with less efficient than porcelain to reached (20.69) % at age (90) days for 20% replacement. Regarding the granular activated carbon, only (10%) replacement had a positive influence on the compressive strength to reached (13.16) % while the others caused a reduction in the compressive strength reached to (29.13)% for 20% replacement.
The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
The study of biomechanical indicators in the arc of the run and the upgrading stage is one of the important variables that affect the nature of the upgrading and thus affect the result of the race due to the importance of these stages and the consequent variables during the last steps. That’s why, the jump-trainings based on assistant means or body weight positively affect the step-time for each of the three steps in the acceleration arc. As well as, it focuses on the momentary strength of each step at this stage. It also significantly affects the speed of motor performance to suit the activity in which the runner needs to perform perfect steps with high flow in order to convert the horizontal speed to a vertical one. This is achieved thr
... Show MoreThe sustainable competitive advantage for organizations is one of the requirements for value creation, which centered on the possession of scarce resources that achieve maximum flows to invest in intellectual capital, if what has been interest in them, measured and employed the way properly and style, so I figured the need for new technologies to enable organizations to measure the intellectual and physical assets and to assess its performance accordingly, so it sheds search light on the measurement of the added value of existing knowledge using the standard value-added factor is the intellectual (value added intellectual coefficient) (VAIC) and to develop a set of assumptions about the extent of the difference between the sample
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreFiber Bragg Grating has many advantages where it can be used as a temperature sensor, pressure sensor or even as a refractive index sensor. Designing each of this fiber Bragg grating sensors should include some requirements. Fiber Bragg grating refractive index sensor is a very important application. In order to increase the sensing ability of fiber Bragg gratings, many methods were followed. In our proposed work, the fiber Bragg grating was written in a D-shaped optical fiber by using a phase mask method with KrFexcimer. The resultant fiber Bragg grating has a high reflectivity 99.99% with a Bragg wavelength of 1551.2 nm as a best result obtained from a phase mask with a grating period of 1057 nm. In this work it was found that the rota
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreThis research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use
... Show More