Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight concrete performed similarly to conventional concrete when used as a filler material in composite steel tube beams. The structural effects of sawdust substitution on ultimate load and initial stiffness were less substantial than the relative changes in the material properties, and the ultimate capacity of the tested samples decreased moderately as the substitution percentage of sawdust increased. Moreover, the maximum load capacity was observed to decrease by 6.43–30.71% for sawdust replacement levels between 5% and 45.1% across all tested samples. Additionally, when using lightweight concrete with 5% sawdust, the moment value of the CFST sample was reduced by 6.4%. Notably, the sawdust CFST samples exhibited a flexural behavior that was relatively comparable to that of the standard CFST samples.
This study aims to assess the effect of adding twisted fins in a triple-tube heat exchanger used for latent heat storage compared with using straight fins and no fins. In the proposed heat exchanger, phase change material (PCM) is placed between the middle annulus while hot water is passed in the inner tube and outer annulus in a counter-current direction, as a superior method to melt the PCM and store the thermal energy. The behavior of the system was assessed regarding the liquid fraction and temperature distributions as well as charging time and energy storage rate. The results indicate the advantages of adding twisted fins compared with those of using straight fins. The effect of several twisted fins was also studied to discover
... Show MoreInfluence of combined square nozzle with helical tape inserted in a constant heat flux tube on heat transfer enhancement for turbulent airflow for Reynolds number ranging from 7000 to 14500 were investigated experimentally. Three different pitch ratios for square nozzle (PR = 5.8, 7.7 and 11.6) according to three different numbers of square nozzle (N = 3, 4 and 5) and constant pitch ratios for helical tape were used. The results observed that the Nusselt number and friction factor for combination with winglets were found to be up to 33.8 % and 21.4 %, respectively higher than nozzle alone for pitch ratio PR=5.8. The maximum value of thermal performance for using combination with winglets was about 1.351 for pitch ratio= 5.8. Nusselt numb
... Show MoreLow-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreIn this work, studying the effect of ethylenediamine as a corrosion inhibitor was investigated for carbon steel in aerated HCl solution in range of 0.1-1N under dynamic conditions, i.e., rotational velocity of 400–1200 rpm in the temperature range 35 – 65 ºC. Weight loss method was employed in absence and presence of the inhibitor as an adsorption type in concentration range 1000 – 5000 ppm using rotating cylinder specimens. The experimental results showed that corrosion rate in absence and presence of inhibitor is increased with increasing temperature, rotational velocity and concentration of acid. It is decreased with increasing inhibitor concentration for the whole range of temperature, rotational velocity and concentrati
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreIn the case where a shallow foundation does not satisfy with design requirements alone, the addition of a pile may be suitable to improve the performance of the foundation design. The lack of in-situ data and the complexity of the issues caused by lagging in the research area of pile foundations are notable. In this study, different types of piles were used under the same geometric conditions to determine the load-settlement relationships with various sandy soil relative densities. The ultimate pile capacity for each selected pile is obtained from a modified California Bearing Ratio (CBR) machine to be suitable for axial pile loading. Based on the results, the values of Qu for close-ended square pile were increased by 15
... Show MoreThis study focuses on the modeling of manufactured damper when used in steel buildings. The main aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result due to earthquakes by introducing an extra damping in addition to the traditional damping.
Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is generally preferred in structural engineering as it leads to a linear model then it has been used during this study to simulate the behavior of the Pure Manufactured Damper.
After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can be used as a structural element that can be added to a mathematica