Perennial biofuel and cover crops systems are important for enhancing soil health and can provide numerous soil, agricultural, and environmental benefits. The study objective was to investigate the effects of cover crops and biofuel crops on soil hydraulic properties relative to traditional management for claypan soils. The study site included selected management practices: cover crop (CC) and no cover crop (NC) with corn/soybean rotation, switchgrass (SW), and miscanthus (MI). The CC mixture consisted of cereal rye, hairy vetch, and Austrian winter pea. The research site was located at Bradford Research Center in Missouri, USA, and was implemented on a Mexico silt loam. Intact soil cores (76‐mm diam. by 76‐mm long) were taken from the 0–10, 10–20, 20–30, and 30–40 cm depths with three plot replicates and two sub‐samples per plot replicate per depth. Soil hydraulic properties evaluated for each sample included: saturated hydraulic conductivity (Ksat), water retention, bulk density, and pore size distributions. Results showed with the test of Duncan's least significant differences that treatments of MI (1.18 Mg m−3) and SW (1.21 Mg m−3) had lower values of bulk density averaging across soil depth than CC (1.27 Mg m−3) and NC (1.31 Mg m). Management systems significantly increased Ksat with the biofuel treatments at 0–10 cm compared to NC system. The MI management showed a significant increase in macroporosity and fine mesoporosity as compared to other management systems. Slight changes have occurred in the measured soil physical properties for CC system compared to NC plots. Overall, increasing soil organic matter from more plant roots from long‐term biofuel cropping systems can improve soil water storage and crop productivity.
In the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.
A reseach is carried out by using Alumina material type α-Al2O3 which has partical size 63μm doped with different percentage weight of MgO (0.1%,0.3%and0.5%) and by using dry press method to prepare the samples ,A force press 50KN used and sintering to 1500oC with soaking time of 6 hours. The physical properties were studied such as "Bulk density ,Porosity and water absorption "also the mechanical properties such as (hardness,compressive strength ), the result shows that the best ratio of maginsa(MgO) added to Alumina (Al2O3)is 0.5%and this worked to improve Physical and mechanical properties .
Twenty purified isolates were obtained by using different soil sources, only twelve isolates belonging to Aspergillus genera depending on cultural and morphological characterization. The isolates were used as alkaline protease producer. The highest proteolytic, enzymatic activity (95.83U/ml) was obtained from
optical properties of pure poly(vinyl Alcohol) films and poly(vinyl Alcohol) doped with methyl red were study, different percentage prepared with constant thickness using casting technique. Absorption, Transmission spectra have been recorded in order to study the optical parameters such as absorption coefficient, energy gap, refractive index, Extinction coefficient and dispersion parameters were measured in the wavelength range (200-800)nm. This study reveals that the optical properties of PVA affect by increasing the impurity concentration.
Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
During the prior three decades numerous research works presented to investigate the behavior of reinforced soil. A, IJSR, Call for Papers, Online Journal
Gypseous soil is a collapsible soil, which causes large deformations in buildings that are constructed on it. Various methods have been used to minimise this effect, such as replacing the gypseous soil or using soil stabilisation (grouting or soil improvement). This study was carried out on four types of gypseous soils that have different properties and various gypsum contents. The testing was carried out on remoulded samples to evaluate the compressibility of gypseous soil under different conditions. The samples were grouted with acrylate liquid. The relationships between the injection pressure and the radius of flow, between time of injection and radius of flow, and between time and quantity of acrylate liquid are investigated on
... Show MoreAbstract:
The Iraqi economy faces complex economic challenges that threaten the prospects for growth and stability in the short and medium term, The decrease in oil revenues on which Iraq is based in financing its total expenditure, both operational and investment, led to the emergence of a deficit in the government budget, As the global oil price crisis affected the revenues of the Iraqi government negatively, especially as this negative impact coincided with the increase in military spending resulting from Iraq's war against terrorism, Which led to the Iraqi government to implement austerity measures were to reduce public spending on several projects, which are less important compared to projects that a
... Show More