Perennial biofuel and cover crops systems are important for enhancing soil health and can provide numerous soil, agricultural, and environmental benefits. The study objective was to investigate the effects of cover crops and biofuel crops on soil hydraulic properties relative to traditional management for claypan soils. The study site included selected management practices: cover crop (CC) and no cover crop (NC) with corn/soybean rotation, switchgrass (SW), and miscanthus (MI). The CC mixture consisted of cereal rye, hairy vetch, and Austrian winter pea. The research site was located at Bradford Research Center in Missouri, USA, and was implemented on a Mexico silt loam. Intact soil cores (76‐mm diam. by 76‐mm long) were taken from the 0–10, 10–20, 20–30, and 30–40 cm depths with three plot replicates and two sub‐samples per plot replicate per depth. Soil hydraulic properties evaluated for each sample included: saturated hydraulic conductivity (Ksat), water retention, bulk density, and pore size distributions. Results showed with the test of Duncan's least significant differences that treatments of MI (1.18 Mg m−3) and SW (1.21 Mg m−3) had lower values of bulk density averaging across soil depth than CC (1.27 Mg m−3) and NC (1.31 Mg m). Management systems significantly increased Ksat with the biofuel treatments at 0–10 cm compared to NC system. The MI management showed a significant increase in macroporosity and fine mesoporosity as compared to other management systems. Slight changes have occurred in the measured soil physical properties for CC system compared to NC plots. Overall, increasing soil organic matter from more plant roots from long‐term biofuel cropping systems can improve soil water storage and crop productivity.
Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –
... Show MoreIn this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show MoreHydrochloric acid (HCl) is a substance that is frequently utilized in industrial operations for important tasks such as chemical cleaning and pickling metallic surfaces.Therefore, the corrosion inhibition ability of three newly synthesized quinazoline derivatives namely, 3-allyl-2-(propylthio) quinazolin-4(3H)-one) (APQ), (3-allyl-2-(allylthio) quinazolin-4(3H)-one) (AAQ), (3-allyl- 2-( Prop -2-yn -1-ylthio) Quinazolin - 4 (3H) - one) (AYQ) were theoretically determined and these compounds were characterized using Fourier Transform Infra-Red (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic. A series of quantum chemical properties of these derivatives: EHOMO, ELUMO, energy gap (ΔE),dipole moment (μ), hardness (η), soft
... Show MoreThe adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreIn this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA) was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for tw
... Show More