Preferred Language
Articles
/
dBbeFooBVTCNdQwC6ZCt
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Mon Jan 04 2021
Journal Name
Iium Engineering Journal
RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION
...Show More Authors

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear COVID-19 Mathematical Model Using a Reliable Numerical Method
...Show More Authors

This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition
...Show More Authors

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Efficient Semi-Analytic Technique for Solving Nonlinear Singular Initial Value Problems
...Show More Authors

 The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point  osculatory  interpolation.           The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems.             A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 16 2018
Journal Name
Springer Science And Business Media Llc
MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
...Show More Authors

Scopus (62)
Crossref (45)
Scopus Clarivate Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Accurate Three Dimensional Coordinates Measurements Using Differential GPS Real Time Kinematic Mode
...Show More Authors

The accurate 3-D coordinate's measurements of the global positioning systems are essential in many fields and applications. The GPS has numerous applications such as: Frequency Counters, Geographic Information Systems, Intelligent Vehicle Highway Systems, Car Navigation Systems, Emergency Systems, Aviations, Astronomical Pointing Control, and Atmospheric Sounding using GPS signals, tracking of wild animals, GPS Aid for the Blind, Recorded Position Information, Airborne Gravimetry and other uses. In this paper, the RTK DGPS mode has been used to create precise 3-D coordinates values for four rover stations in Baghdad university camp. The HiPer-II Receiver of global positioning system was used to navigate the coordinate value. The results wil

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF