Preferred Language
Articles
/
dBY9_IoBVTCNdQwC1sYK
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasing degree of polynomial solutions (n). In addition, the convergence of the proposed approximate methods is given based on the Banach fixed point theorem.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
A Numerical scheme to Solve Boundary Value Problems Involving Singular Perturbation
...Show More Authors

The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of King Saud University - Science
Three iterative methods for solving second order nonlinear ODEs arising in physics
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Oscillating Problems Using Modifying Runge-Kutta Methods
...Show More Authors

     This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and amplification error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientific literature.

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Optimal Classical Continuous Control Quaternary Vector of Quaternary Nonlinear Hyperbolic Boundary Value Problem
...Show More Authors

This work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control qua

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method
...Show More Authors

  In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem  which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.

View Publication Preview PDF
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (15)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

  The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] .  Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication