In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasing degree of polynomial solutions (n). In addition, the convergence of the proposed approximate methods is given based on the Banach fixed point theorem.
Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
The preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
Abstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreComputational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreIn this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
Abstract:The optimum design of the magnetic deflector with the lowest values of the radial and spiral distortion aberration coefficients was computed. The optimized calculations were made using three models, Glaser bell-shaped, Grivet-lenz and exponential models. By using the optimum axial field distribution, the pole pieces shape which gave rise to those field distributions was found by using the reconstruction method. The calculations show that the results of the three models coincide at the lower values of the excitation parameter. In general the Glaser- bell shaped model gives the optimum results at the whole range of the excitation parameter under investigation.The negative values of the spiral distortion aberration coefficient appears
... Show More