Preferred Language
Articles
/
d4bef4YBIXToZYALhoy7
Proposed Algorithm for Gumbel Distribution Estimation
...Show More Authors

Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical features. The objective of this paper is thus to propose a new algorithm where it allows getting the estimation of the parameters of Gumbel probability distribution directly. Furthermore, it overcomes the mathematical difficulties in this matter without need to the derivative of the likelihood function. Taking simulation approach under consideration as empirical experiments where a hybrid method performs optimization of these three traditional methods. In this regard, comparisons have been done between the new proposed method and each pair of the traditional methods mentioned above by efficiency criterion Root of Mean Squared Error (RMSE). As a result, (36) experiments of different combinations of initial values of two parameters (λ: shift parameter and θ: scale parameter) in three values that take four different sample sizes for each experiment. To conclude, the proposed algorithm showed its superiority in all simulation combinations associated with all sample sizes for the two parameters (λ and θ). In addition, the method of Moments was the best in estimating the shift parameter (λ) and the method of Maximum Likelihood was in estimating the scale parameter (θ).

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Multidimensional Systolic Arrays of LMS Algorithm Adaptive (FIR) Digital Filters
...Show More Authors

A multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors) and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR) filter may be opposed the fundamental requirements of fa

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Art Image Compression Based on Lossless LZW Hashing Ciphering Algorithm
...Show More Authors
Abstract<p>Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and </p> ... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Using Particle Swarm Optimization Algorithm to Address the Multicollinearity Problem
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Development prediction algorithm of vehicle travel time based traffic data
...Show More Authors

This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Information Hiding using LSB Technique based on Developed PSO Algorithm
...Show More Authors

<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi

... Show More
View Publication
Scopus (19)
Crossref (5)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Mathematics
Face Recognition Algorithm Based on Fast Computation of Orthogonal Moments
...Show More Authors

Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima

... Show More
View Publication
Scopus (34)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Journal Of King Saud University - Computer And Information Sciences
Heuristic initialization of PSO task scheduling algorithm in cloud computing
...Show More Authors

View Publication
Scopus (163)
Crossref (119)
Scopus Clarivate Crossref
Publication Date
Sat Sep 15 2018
Journal Name
Journal Of The College Of Education For Women
Estimation of the Risk of Water Erosion in Jawarta District in Sulaymaniyah Governorate Using the Global Equation for Soil Loss (USLE)
...Show More Authors

The present research deals with the spatial variance analysis in Jwartadistrict and conducting a comparison on the spatial and seasonal changes of the vegetation cover between (2007-2013) in order to deduce the relationship between the vegetation density and the areas which are exposed to the risk of water erosion by using Plant Variation Index  NDVI) C (coefficient and by using Satellite images of Landsat satellite which are taken in 2/7/2007 and Satellite images of Landsat satellite taken in 11/1/ 2013, the programs of remote sensitivity and the Geographic Information Systems.

    The study reveals that there is a variance in the density of vegetation cover of the area under study betwee 2007 and 2013. Howev

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 31 2026
Journal Name
International Journal Of Intelligent Engineering And Systems
Low-complexity Deep Learning for Joint Channel-type Identification and SNR Estimation in MIMO-OFDM Using CNN–BRNN with LUT Labels
...Show More Authors

Channel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T

... Show More
View Publication Preview PDF
Crossref