Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical features. The objective of this paper is thus to propose a new algorithm where it allows getting the estimation of the parameters of Gumbel probability distribution directly. Furthermore, it overcomes the mathematical difficulties in this matter without need to the derivative of the likelihood function. Taking simulation approach under consideration as empirical experiments where a hybrid method performs optimization of these three traditional methods. In this regard, comparisons have been done between the new proposed method and each pair of the traditional methods mentioned above by efficiency criterion Root of Mean Squared Error (RMSE). As a result, (36) experiments of different combinations of initial values of two parameters (λ: shift parameter and θ: scale parameter) in three values that take four different sample sizes for each experiment. To conclude, the proposed algorithm showed its superiority in all simulation combinations associated with all sample sizes for the two parameters (λ and θ). In addition, the method of Moments was the best in estimating the shift parameter (λ) and the method of Maximum Likelihood was in estimating the scale parameter (θ).
In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThis work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
This study focuses on the basics of cultivation and production of the Wheat Crop in
Wasit Province ; in order to reveal the reality of the geographical distribution of its cultivation
and production.
Wheat is the most important field crops cultivated in Wasit province, as it has vast
possibilities for expansion in growing and production, in which agriculture conducted in a
year and left in other , then changing this method would increase cultivated area of it to nearly
doubled, as well as the possibility of increasing average yields in Donam by using improved
seeds, fertilizer, with the availability of water lever machines, especially wheat is grown in
areas of rivers abutment.
The study showed the spread of th
In this article we study the variance estimator for the normal distribution when the mean is un known depend of the cumulative function between unbiased estimator and Bays estimator for the variance of normal distribution which is used include Double Stage Shrunken estimator to obtain higher efficiency for the variance estimator of normal distribution when the mean is unknown by using small volume equal volume of two sample .