Image processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of its outer surface, afterward selecting the fruit is achieved, then the crop is sorted by color. An electromechanical system was developed for this process with three different belt conveyor speeds (0.8, 2 and 3 m /s). The image processing algorithms and external surface color analysis that were developed within the scope of the study were tested on this system in real practical time. Moreover, choosing the appropriate speed for the conveyor belt, depending on the time sufficient to process the images or analyze the colors of the outer surface of the pepper fruits. The highest successav erage of 93.33% was recorded along with the lowest error average of 6.66%, at the first speed using the Pixy2 camera, whereas the sorting process using the TCS3200 color sensor recorded the highest success average of 83.33% along with the lowest error average of 16.66%, at the first speed. It is evident from the above-mentioned values, that the method of sorting the pepper with the Pixy2 camera is more successful than the second method of using the TCS3200 color sensor, nevertheless, the second method can also be used in the process of sorting the pepper fruits.
Browse Iraqi academic journals and research papers
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreReciprocal Teaching is an interactive method that is used to improve reading comprehension. Using this teaching strategy, teachers and students take turns leading discussions regarding sections of text using the four strategies: predicting, questioning, clarifying and summarizing. This study is an attempt to investigate the effect of using reciprocal teaching on improving female college students' achievement in reading comprehension. To fulfill the aim of the study, the researcher has adopted two null hypotheses: first, there is no significant difference between the achievement of students' who practice the reciprocal teaching technique and that of students who do not practice it. Second, there is no statistically significant difference
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show MoreAbstract
The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show More