Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
A set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show MoreThe study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreThe purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
The purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
Due to the importance of the extraction process in many engineering and medical industries, in addition to great interest in medicinal plants, in this research, microwave-assisted extraction has been applied to extract some active compounds from Rosmarinus officinalis leaves. The optimal extraction conditions were then determined by calculating the ratio and extraction efficiency. The process has also been described through kinetic study by applying five kinetic models, the Hyperbolic diffusion model, Power low model, the First order reaction model, Elovich's model, and Fick's second law diffusion model and determining their compatibility with the studies operation, and determining the kinetic constants for each model. The result
... Show MorePeriodontal diseases are inflammatory diseases, for which, scaling and root planning is the main approach. Diode laser therapy as an adjunct to non-surgical periodontal treatment has shown some beneficial effects.
Aim: The objective of this single randomized controlled clinical study was to assess the effect of a 940 nm diode laser as an adjunct to SRP therapy in the treatment of periodontal pockets.
Methods: In this study, twenty patients in need of periodontal treatment with periodontal pocket ≥ 4 mm were selected for this split-mouth clinical study. Test group treated by diode laser 940 nm as an adjunct with SRP, control group treated by SRP in contralateral quadrants. Clinical
... Show More