Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
This paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MoreThe objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis
... Show MoreInherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,
... Show MoreIn this research study the synodic month for the moon and their
relationship with the mean anomaly for the moon orbit and date A.D
and for long periods of time (100 years), we was design a computer
program that calculates the period of synodic months, and the
coordinates of the moon at the moment of the new moon with high
accuracy. During the 100 year, there are 1236 period of synodic
months.
We found that the when New Moon occurs near perigee (mean
anomaly = 0°), the length of the synodic month at a minimum.
Similarly, when New Moon occurs near apogee (mean anomaly =
180°), the length of the synodic month reaches a maximum. The
shortest synodic month on 2053 /1/ 16 and lasted (29.27436) days.
The lo
In this research study the synodic month for the moon and theirrelationship with the mean anomaly for the moon orbit and date A.Dand for long periods of time (100 years), we was design a computerprogram that calculates the period of synodic months, and thecoordinates of the moon at the moment of the new moon with highaccuracy. During the 100 year, there are 1236 period of synodicmonths.We found that the when New Moon occurs near perigee (meananomaly = 0°), the length of the synodic month at a minimum.Similarly, when New Moon occurs near apogee (mean anomaly =180°), the length of the synodic month reaches a maximum. Theshortest synodic month on 2053 /1/ 16 and lasted (29.27436) days.The longest synodic month began on 2008 /11/ 27 a
... Show MoreInternal Audit is one of the most important backers of corporate governance, the researcher expanded his interest in this subject to examine the efficiency of Internal Auditors at the Arab Bank and its branches in Jordan to achieve Accountability which enhances the Corporate Governance and to identify the effect of the International Internal Audit Standards in strengthening the role of Internal Auditors in Accountability, and the effect of Attribute and Performance Standards in Accountability. The researcher applied descriptive analysis method to define the role of Internal Audit in the Arab Bank in achieving one of the basic principles of Corporate Governance assimilated in Accountability. The researcher’s sources include
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreThe surgical treatment of inferior turbinate hypertrophy (ITH) is challenging. Submucosal diathermy (SMD) is a well-known surgical procedure used for the treatment of ITH, microdebrider-assisted rhinoplasty (MAT) is relatively a newer technique used in the management of ITH. To evaluate the effect of MAT on inferior turbinate size and nasal airway patency in patients with bilateral ITH in comparison to SMD. Seventy-one patients presented with nasal obstruction due to bilateral ITH were allocated into two groups, group a (35 patients) were subjected to SMD and 36 patients in group B were subjected to MAT. All the patients had been sent to CT scan pre-operatively and at the third postoperative month to measure the cross-sectional areas
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show More