Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
High-performance liquid chromatographic methods are used for the determination of water-soluble vitamins with UV-Vis. Detector. A reversed-phase high-performance liquid chromatographic has been developed for determination of water-soluble vitamins. Identification of compounds was achieved by comparing their retention times and UV spectra with those of standards solution. Separation was performed on a C18 column, using an isocratic 30% (v/v) acetonitril in dionozed water as mobile phase at pH 3.5 and flow rate 1.0m/min. The method provides low detection and quantification limits, good linearity in a large concentration interval and good precision. The detection limits ranged from 0.01 to 0.025µg/ml. The accuracy of the method was
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
This study is considered to be the first on this sector of Tigris River after 2003, to evaluate the effect of Tharthar Arm on the composition and diversity of Copepoda in Tigris River. Six sampling sites were selected; two on the Tharthar Arm and four sites along the Tigris River, one before the confluence as a control site and the others downstream the confluence; thirty-five copepod taxa were recorded, 34 taxa in the Tigris River and 25 taxa in the Tharthar Arm.
The highest density of Copepoda was in site 2 at Tharthar Arm was 265584.2 Ind./m3 lead to an increasing in Copepoda density in Tigris River from 63878.2 Ind./m3 in site 1 before the confluence to 127198.3 Ind./m3 in site 4 immediately downstream the confluence. Also, the me
The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
An experiment was conducted in pots under field conditions during fall seasons of 2017 and 2018. This study aimed to improve a weak growth of seedlings under salt stress in sorghum. Three factors were studied. 1st factor was three cultivars (Inqath, Rabeh, and Buhoth70). 2nd factor was seed priming (primed and unprimed seed). Seed were primed by soaking for 12 hours in a solution containing 300 + 70 mg L−1 of gibberellic (GA3) and salicylic (SA) acids, respectively. 3rd factor was irrigation with saline water (6, 9 and 12 dS m−1) resulting from dissolving sodium chloride in distilled water in addition to control treatment (distilled water). Randomized complete block design was used with four replications. In both seasons: the results sh
... Show MoreThe water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users. This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer. The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is provided to the user. The design of the water supply network inside the building is
... Show More