Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
This in vivo study was conducted to investigate the effect of different concentrations of ozonated water on experimentally skin infection with some of bacterial isolates (Pseudomonas aeruginosa and Staphylococcus aureus ) which Showed dermal infection in experimental animals after 48 hours of exposure to these Microorganisms. Results revealed that ozone has the power to accelerated the healing process depending on the perfect concentration of ozonated water used and the severity of infection & nature of causative agent , in which the recovering period was 7 days for the infection caused by P. aeruginosa and 5 day for S.aureus by using the concentration 60 µg/ml . Results also indicated in this study the stimulated effect of O
... Show MoreIn this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t
... Show MoreBackground: Radiotherapy, is therapy using ionizing radiation in order to deliver an optimal dose of either particulate or electromagnetic radiation to a particular area of the body with minimal damage to normal tissues. The source of radiation may be outside the body of the patient (external beam irradiation) or it may be an isotope that has been implanted or instilled into abnormal tissue or a body cavity. Called also radiotherapy. The aim of work studies the relationship between the depth dose and the high photon xray energies (6MeV and 10MeV). Patients and methods: in our work, we studied the dose distribution in water phantom given at different depths (zero-18) cm deep at1cm intervals treated with different field size (5×5-,10×1
... Show MoreAbstract. In this research, the uranium concentration in (16) water samples collected from some agricultural areas surrounded with AlTuwitha nuclear site in Baghdad-Iraq was measured by using a CR-39 detector. The concentration of uranium in this study was from (0.6 ± 0.33mg/l) to (2.51 ± 0.49 mg/l), and the weighted average for the concentrations (1.262 ± 0.402 mg/l). The results showed it is a concentration of uranium level in water samples studied is higher than the allowed limit recommended by WHO and ICRP.
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MoreTrickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch
... Show MoreIn this study, ceramic purifier (CP) was produced from a mixture of Iraqi raw materials. This ceramic mixture was prepared using Bentonite as a Clay, Porcelanite as a Silica, and Limestone as a flux. The produced ceramic filter was formed by semi-dry compressing method and was fired at 1200 C?. Physical properties of the produced CP were measured. A hydraulic test rig was constructed to study the hydraulic conductivity of the produced CP. The average hydraulic conductivity of the produced CP was 55 times that of commercial types of ceramic filters. The mineral composition of the produced ceramics was found by X-Ray tests. Tests results showed that all of the produced ceramics filters composed mainly of low Cristobalte and Tridoymite in addi
... Show MoreBasrah is the richest town and the economic capital of Iraq. It suffers from lack of drinking water. This project is a dream to supply drinking water to Basrah citizens within WHO standards. Water should pass sedimentation and filtration stages before interring reverse osmosis unit. The design is carried out using lewaplus2 software. Several parameters should be selected in the design step membrane type, number of stages, number per element in each stage, and the recovery percentage. An optimization is carried out using Minitab ver. 18 for the acceptable limit of TDS and minimum cost and it was found that the optimum conditions were 52% for first stage, the numbers of vessels are 20 for both the first and second stage. In addition,
... Show MorePermanent magnets of different intensities were used to investigate the effect of a magnetic field in the process of preventing deposits of calcium carbonate. The magnets were fixed on the water line from the tap outside. Then heating a sample of this water in flasks and measuring the amount of sediment in a manner weighted differences. These experiments comprise to the change of the velocity of water flow, which amounted to (0.5, 0.75, 1) m/sec through the magnetic fields that are of magnetic strength (2200, 6000, 9250, 11000) Gauss, and conduct measurements, tests and compare them with those obtained from the use of ordinary water.The results showed the effectiveness of magnetic treatment in reducing the rate of deposition of calcium carb
... Show MoreSalinity of soil or irrigation water is one of the most important obstacle towards crop production and productivity, especially with the increasing scarcity of fresh water in Iraq and the Arab countries. The impact of salinity will be alleviated with the increasing temperature due to global warming. The objectives of this article was to shed some light on traits more related to salinity stress tolerance in oats, and to identify genetic variation of these traits. A split-plot arrangement experiment with RCBD was applied through 2011-2013 on the farm of Dept. of Field Crops/Coll. of Agric./Univ. of Baghdad. The oats cultivars; Hamel, Pimula and Genzania were set in sub-plots, whereas water quality was set in main-plots. Water quality had two
... Show More