Preferred Language
Articles
/
d4ajlIYBIXToZYALBpOm
Well Placement Optimization through the Triple-Completion Gas and Downhole Water Sink-Assisted Gravity Drainage (TC-GDWS-AGD) EOR Process
...Show More Authors

Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Australian Journal Of Mathematical Analysis And Applications
Formulation of approximate mathematical model for incoming water to some dams on Tigris and Euphrates Rivers using spline function
...Show More Authors

n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.

View Publication
Scopus
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Effect of magnetic water in the some parameters of growth & activity of some enzymes in the ( Raphanus raphanistrum L.) Plant
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
New Method for Determination of Molybdenum(VI) through Flow Injection Analysis Via the Consumption of Liberated Oxygen from Reaction System Ammonia-Hydrogen peroxide-Molybdenum(VI) in the Presence of Pyrogallol
...Show More Authors

This piece of research work aims to study one of the most difficult reaction and determination due to continuous and rapid variation of reaction products and the reactants. As molybdenum (VI) aid in the decomposition of hydrogen peroxide in alkaline medium of ammomia, thus means a continuous liberation of oxygen which cuases and in a continuous manner a distraction in the measurement process. On this basis pyrogallol was used to absorbe all liberated oxygen and the result is an a clean undisturbed signals. Molybdenum (VI) was determined in the range of 4-100 ?g.ml-1 with percentage linearity of 99.8% or (4-300 ?g.ml-1 with 94.4%) while L.O.D. was 3.5 ?g.ml-1. Interferring ions (cations and anions) were studied and their main effect was red

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Minimization of Toxic Ions in Waste Water Using Emulsion Liquid Membrane Technique
...Show More Authors

In the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant co

... Show More
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
VARIATION OF SOME WATER QUALITY PARAMETERS OF HUWAIZA MARSH IN SOUTHERN IRAQ
...Show More Authors

Huwaiza marsh is considered the largest marsh in the southern part of Iraq. It is located between 31° and 31.75° latitude and extends over the Iraqi-Iranian border; but the largest part lies in Iraq. It is located to the east of Tigris River in Messan and Basra governorates.
In this research, the variation of some water quality parameters at different locations of Huwaiza marsh were studied to find out its efficacy in the treatment of the contamination coming from the wastewater outfall of Kahlaa brokendown sewage treatment plant which lies on the Kahlaa River. This rive is the main feeder of Huwaiza marsh. Ten water quality sampling locations were chosen in this marsh. The water samples were taken during 2009 for three months; Janu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Journal Of Engineering
Evaluation of Using Magnetized Water in Leaching Salts in Sandy Loam Soil
...Show More Authors

Many studies and researchers have reported significant evidence that some physical properties of water can be changed as it passes through a magnetic field that can improve water use.  This can have a promising potential for applications, especially in the fields of irrigation and drainage. In this research, magnetized water was used to leach salt-affected sandy loam soil. A test rig was designed and constructed to investigate the effects of magnetized water on leaching soil. The rig consists of a magnetization device that can provide variable intensity. Water was supplied from a constant head reservoir to the magnetization device then to the soils that were placed in plastic columns. Five different magnetic intensi

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Bionatura
Effect of Partial Drip Irrigation Methods on Soil Moisture and Water Potential Distribution, Growth Characteristics and Yield of Maize
...Show More Authors

A field experiment was conducted during the autumn of 2021 at the Agricultural Research Department station / Abu Ghraib to evaluate the soil moisture, water potential distribution, and growth factors of maize crops under alternating and constant partial drip irrigation methods. In the experiment, two irrigation systems were used, surface drip irrigation (DI) and subsurface irrigation (SD); under each irrigation system, five irrigation methods were: conventional irrigation (CI), and 75 and 50% of the amount of water of CI of each of the alternating partial irrigation APRI75 and APRI50 and the constant partial irrigation FPRI75 and FPRI50 respectively. The results showed that the water depth for conventional irrigation (C1) was 658.3

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Green Engineering
Water distribution and interference of wetting front in stratified soil under a continues and an intermittent subsurface drip irrigation
...Show More Authors

Scopus (8)
Scopus
Publication Date
Wed Apr 01 2020
Journal Name
Plant Archives
Effect of applying selenium element and ascorbic acid on reducing the harmful effect of environmental stress on wheat plants irrigated by water contaminated with lead and cadmium
...Show More Authors

Scopus (4)
Scopus
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More