Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show MoreIn wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D) ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than
... Show More- coli K12 and B. subtilis 168 were investigated for their cadmium and mercury tolerance abilities. They were developed by UV mutagenesis technique to increase their tolerances either to cadmium or mercury, and their names then were designated depend on the name and concentration of metals. E. coli K12 Cd3R exhibited bioremediation amount of 6.5 mg Cd/g dry biomass cell. At the same time, its wild-type (E. coli K12 Cd3) was able to remove 5.2 mg Cd/g dry biomass cell in treatment of 17 mg Cd /L within 72 hours of incubation at 37 °C (pH=7) in vitro assays. The results show that E.coli K12 Hg 20 was able to remove 0.050 µg Hg/g dry biomass cell
This research is drawn from a doctoral dissertation, studying the approach of Sheikh Abd al-Qadir al-Muhajir al-Sanandji al-Kurdi (1303 AH) on the issue of proving the existence of God Almighty.
Sheikh Abd al-Qadir al-Sanandji was one of the scholars well versed in mental sciences. He has many books, all of them in the sciences of speech and wisdom, and among his books is the book (Raising the Eyebrow in Explanation of Ithbat al-Wajib), which is still a manuscript that has not been printed.
Through this book, the researcher studied the evidence of Sheikh Abdul Qadir to prove the existence of God Almighty, and compared it with the evidence of philosophers and theologians.
At the beginning, he presented a study on the import
Cumulative lifetime lead (Pb) exposure has been associated with accelerated declines in cognition through the free radical generation and epigenetic effects. Several pieces of literature have identified a correlation between exposure to lead and neurodegenerative disorders. Harwich strain Drosophila melanogaster was exposed to lead acetate for two weeks, and changes in pulse transmission by acetylcholinesterase and systemic redox were evaluated. Besides, molecular docking studies of acetylcholinesterase against Quercetin and its most common derivatives contained in food have been performed. Pharmacokinetic studies on Quercetin and its derivatives have also been performed in silico toxicity. The data obtained showed alterations in antioxi
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreSome physical and chemical characteristics of Jurf Al- Sakar drinking water plant in Babylon governorate have been studied. Seven locations for this plant were selected. These were the drinking water treatment plant source on Euphrates River before entering the plant, precipitation, filtration and collection tanks, and also after leaving the plant at distances of one meter, 4 and 8 km. The samples were collected bimonthly from October, 2002 to August, 2003. Some results match with the national and international standard characters while the other characters (Turbidity, total hardness, calcium, nitrate, phosphate and the biological oxygen demand values) were not match. The present study showed that drinking water treatment plant is undrinka
... Show MoreThe present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show More