Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show Morethe study covered theoretical concering parial molal volume the applicability of jones-dole equation
In this study, we fabricated nanofiltration membranes using the electrospinning technique, employing pure PAN and a mixed matrix of PAN/HPMC. The PAN nanofibrous membranes with a concentration of 13wt% were prepared and blended with different concentrations of HPMC in the solvent N, N-Dimethylformamide (DMF). We conducted a comprehensive analysis of these membranes' surface morphology, chemical composition, wettability, and porosity and compared the results. The findings indicated that the inclusion of HPMC in the PAN membranes led to a reduction in surface porosity and fiber size. The contact angle decreased, indicating increased surface hydrophilicity, which can enhance flux and reduce fouling tendencies. Subsequently, we evaluated the e
... Show MoreThe main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate a
... Show More