Biped robots have gained much attention for decades. A variety of researches has been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand the human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. Some challenges encountered in the design of biped robots are: (1) biped robots have unstable structures due to the passive joint located at the unilateral foot-ground contact. (2) They have different configuration when switching from walking phase to another. During the singlesupport phase, the robot is under-actuated, while turning into an over-actuated system during the double-support phase. (3) Biped robots have many degrees of freedom (DOFs). (4) Biped robots interact with different unknown environments. Therefore, this work attempts to investigate and resolve different issues encountered in dynamics, walking pattern generators and control of biped robots; the details as follows: • Dynamics Two walking patterns have been modeled using two well-known formulations: Lagrangian and the modified recursive Newton-Euler (N-E) formulations. The first walking pattern moves with 6 DOFs during the single support phase (SSP) changing its configuration with 7 DOFs during the double support phase (DSP) (the stance foot will move directly during the DSP). Whereas the other walking pattern has 6 DOFs during all walking phases (the SSP and the two sub-phases of the DSP); the stance foot will be fixed during the first sub-phase of the DSP. These two walking pattern are different in configuration and number of phases during the DSP. To resolve the problem of over-actuation, a linear transition function is proposed to ensure smooth transition for the biped from the SSP to the DSP and vice versa. If we assume ideal dynamic response, this strategy can resolve the discontinuity in input control torque and ground reaction forces. • Walking pattern generators Two methods have been used to generate walking patterns of biped mechanism which are (1) optimal control theory and (2) center of gravity (COG)-based model. Computational optimal control has been performed to investigate the effects of some imposed constraints on biped locomotion, such as enforcing swing foot to move level to the ground, hip motion with constant height etc. finite difference approach has been used to transcribe infinite dimensional optimal control problem into finite dimensional suboptimal control problem. Then parameter optimization has been used to get suboptimal trajectory of the biped with the imposing different constraints. In general, any artificially imposed constraint to biped locomotion can lead to increase in value of input control torques. On the other hand, suboptimal trajectory of biped robot during complete gait cycle had been accomplished with different cases such that continuous dynamic response occurs. Enforcing the biped locomotion to move with linear transition of zero-moment point (ZMP) during the DSP can lead to more energy consumption. Using the simple COG-based model, a comparative study has been conducted to generate continuous motion for COG of the biped; all these methods depend on linear pendulum model. It has been shown all these methods are equivalent. On the other hand, the effect of foot configuration has been investigated. Foot rotation can improve biped configuration at heel strike by controlling foot angle. In addition, foot motion with impact can give some freedom and uniform biped configuration compared with motion without impact. To compensate for the deviation of ZMP trajectory due to approximate model of the COG, a novel strategy has been proposed to satisfy kinematic and dynamic constraints, as well as singularity condition. A stable motion has been obtained for the target walking patterns. • Low-level control Two control schemes have been proposed based on dynamics formulations which are conventional adaptive control based on local approximation technique and Lagrangian formulation, and virtual decomposition control (VDC) based on local approximation technique and recursive N-E formulation. In the first approach (conventional control), a new representation of dynamic matrices has been coined which is computationally efficient than other representation (sparse-base representation, Kronecker product etc.). Controller structures for the SSP and the DSP have been designed in details. Since adaptive control assumes no prior knowledge of estimated weighting matrices; therefore, zero input control torques could be result in at the beginning of each phase. Consequently, discontinuous dynamic response could result. The VDC is an efficient tool for complex robotic system such as biped robot. Therefore each subsystem (link, joint) has been controlled using adaptive approximation–based VDC. A novel optimization technique has been used to deal with continuous dynamic response; however, using zero initial weighting matrices for estimation dynamic matrices and vectors could result in zero input control at beginning of each walking phases.
Background. Colorectal cancer, ranking second place in global cancer mortality, arises from diverse causes. There is growing recognition of the substantial involvement of the epigenetic modifications of histones at the DNA level in the occurrence of CRC. Aim. To assess the expression of p53, HDAC1, and HDAC3 proteins in a cohort of CRC patients and to analyze potential relationship between their expression and the stages of CRC progression. Materials and Methods. The retrospective investigation was carried out on 95 paraffin-embedded CRC tissue samples. The expression of p53, HDAC1, and HDAC3 was assessed immunohistochemically. Results. Notably, the expression of the p53 protein in CRC tissue samples exhibited a prominent correlatio
... Show MoreTwo new ligands Na2[ H3B (BDIA)].0.05H2O (L1)(BDIA = 1-Boranyl-2,3-
Dihydro-1H-Indol-3-yl)]Acetic Acid and Na3[H2B(BDIA)2].0.3H2O.0.3CH3Ph (L2)
were synthesized by reaction of NaBH4 with indole -3- acetic acid (IAA) . The
coordination properties of ligands were studied with Co(II) , Ni(II) , Cu(II) and
Pt(IV) ions. Characterization and structural aspects of the prepared compounds were
elucidated by 1HNMR, FTIR electronic spectra, magnetic susceptibility, elemental
and metal analysis, thermal analysis (TG & DTG) and conductivity measurements.
The obtained data for metal complexes suggested square planar geometry for
copper complexes, octahedral geometry for nickel and platinium complexes and
tetrahedral geom
The research addresses a fundamental Islamic jurisprudential Purposeful issue, which is (Sharia), and to indicate the impact of this on Islamic jurisprudence, deriving rulings and extracting purposes, and to repel the illusion that this issue is only doctrinal, and clarifying the aspects of similarities and links between them by explaining the origin of deriving the purposes of Islamic Law (Sharia) through the meanings and wisdom learned from the texts and the explanation of the rulings. The rulings of Islamic Law (Sharia) have urged bringing benefits and repelling harms, and that the path to do so is reason and its production. I began the research by defining the purposes of Islamic Law (Sharia), then defining the rule of rational right
... Show MoreWith the aim of developing potential antimicrobials, a series of new 5-fluoroisatin derivatives incorporated with different secondary amines (piperidine, morpholine, pyrrolidine, dimethylamine, and diphenylamine) for monomer, and (piperazine) in case of dimer Mannich bases, separately in presence of formaldehyde to obtain Mannich bases of 5-fluoroisatin derivatives, which then each Mannich derivatives reacts with phenylhydrazine to form Schiff bases as final products. The resulting compounds were characterized by two spectroscopic analyses; (Fourier- transform infrared) FT-IR and proton nuclear magnetic resonance spectroscopy (¹H-NMR). In addition, the in vitro antibacterial and antifungal activities were tested against some human pathogen
... Show MoreObjective: Carbamazepine is typically used for the treatment of seizure disorders and neuropathic pain. One of the major problems with this drug is its low solubility in water; therefore the objective of this study was to enhance the solubility of carbamazepine by complexation with cyclodextrin to be formulated as effervescent and dispersible granules.Methods: Solvent evaporation method was used to prepare, binary (Carbamazepine/β-cyclodextrin) complex and ternary (Carbamazepine/β-cyclodextrin/hydroxypropyl methyl cellulose (HPMC E5). The more soluble complex will be further formulated as unit dose effervescent and dispersible granules. The complexes were evaluated for their solubility, drug content, percentage practical yield and
... Show MoreIn this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), sizestrain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.454077
... Show More