Biped robots have gained much attention for decades. A variety of researches has been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand the human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. Some challenges encountered in the design of biped robots are: (1) biped robots have unstable structures due to the passive joint located at the unilateral foot-ground contact. (2) They have different configuration when switching from walking phase to another. During the singlesupport phase, the robot is under-actuated, while turning into an over-actuated system during the double-support phase. (3) Biped robots have many degrees of freedom (DOFs). (4) Biped robots interact with different unknown environments. Therefore, this work attempts to investigate and resolve different issues encountered in dynamics, walking pattern generators and control of biped robots; the details as follows: • Dynamics Two walking patterns have been modeled using two well-known formulations: Lagrangian and the modified recursive Newton-Euler (N-E) formulations. The first walking pattern moves with 6 DOFs during the single support phase (SSP) changing its configuration with 7 DOFs during the double support phase (DSP) (the stance foot will move directly during the DSP). Whereas the other walking pattern has 6 DOFs during all walking phases (the SSP and the two sub-phases of the DSP); the stance foot will be fixed during the first sub-phase of the DSP. These two walking pattern are different in configuration and number of phases during the DSP. To resolve the problem of over-actuation, a linear transition function is proposed to ensure smooth transition for the biped from the SSP to the DSP and vice versa. If we assume ideal dynamic response, this strategy can resolve the discontinuity in input control torque and ground reaction forces. • Walking pattern generators Two methods have been used to generate walking patterns of biped mechanism which are (1) optimal control theory and (2) center of gravity (COG)-based model. Computational optimal control has been performed to investigate the effects of some imposed constraints on biped locomotion, such as enforcing swing foot to move level to the ground, hip motion with constant height etc. finite difference approach has been used to transcribe infinite dimensional optimal control problem into finite dimensional suboptimal control problem. Then parameter optimization has been used to get suboptimal trajectory of the biped with the imposing different constraints. In general, any artificially imposed constraint to biped locomotion can lead to increase in value of input control torques. On the other hand, suboptimal trajectory of biped robot during complete gait cycle had been accomplished with different cases such that continuous dynamic response occurs. Enforcing the biped locomotion to move with linear transition of zero-moment point (ZMP) during the DSP can lead to more energy consumption. Using the simple COG-based model, a comparative study has been conducted to generate continuous motion for COG of the biped; all these methods depend on linear pendulum model. It has been shown all these methods are equivalent. On the other hand, the effect of foot configuration has been investigated. Foot rotation can improve biped configuration at heel strike by controlling foot angle. In addition, foot motion with impact can give some freedom and uniform biped configuration compared with motion without impact. To compensate for the deviation of ZMP trajectory due to approximate model of the COG, a novel strategy has been proposed to satisfy kinematic and dynamic constraints, as well as singularity condition. A stable motion has been obtained for the target walking patterns. • Low-level control Two control schemes have been proposed based on dynamics formulations which are conventional adaptive control based on local approximation technique and Lagrangian formulation, and virtual decomposition control (VDC) based on local approximation technique and recursive N-E formulation. In the first approach (conventional control), a new representation of dynamic matrices has been coined which is computationally efficient than other representation (sparse-base representation, Kronecker product etc.). Controller structures for the SSP and the DSP have been designed in details. Since adaptive control assumes no prior knowledge of estimated weighting matrices; therefore, zero input control torques could be result in at the beginning of each phase. Consequently, discontinuous dynamic response could result. The VDC is an efficient tool for complex robotic system such as biped robot. Therefore each subsystem (link, joint) has been controlled using adaptive approximation–based VDC. A novel optimization technique has been used to deal with continuous dynamic response; however, using zero initial weighting matrices for estimation dynamic matrices and vectors could result in zero input control at beginning of each walking phases.
Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreThe current research's problem includes the impact of cognitive reappraisal and reformulate on self-experience of emotional response and its negative feelings and the activity of cognitive reappraisal in changing response. The aim of this research is to detect the relation between adaptive response and cognitive reappraisal upon students of secondary school, and to find differences in gender and stage. The sample contained male and female student for the year(2022-2023) and consists of (480) students (240) male and (240) female in the karkh education/ 1 To achieve this aims researcher used descriptive method and to measure the two variables researcher built a scale for adaptive response according to theory of compound emotion (Barrett,20
... Show MoreCyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix
... Show MoreSawdust has the ability to adsorb the dyestuff from aqueous solution. It may be useful low cost adsorbent for the treatment of effluents, discharged from textile industries. The effectiveness of sawdust has been tested for the removal of color from the wastewater samples containing two dyes namely Direct Blue (DB) and Vat Yellow (VY). Effect of various parameters such as agitation time, adsorbent dose and initial concentration of each dye has been investigated in the present study. The adsorption of dyes has been tested with various adsorption isotherm models. The Langmuir isotherms model is found to be the most suitable one for the dye adsorption using sawdust and the maximum adsorption capacity is 8.706 mg/g and 6.975 mg/g for DB and V
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreThe inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreAcceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.
An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo
... Show More