Nonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreGame theory problems (GTP) frequently occur in Economy, Business Studies, Sociology, Political Science, Military Activities, and so on are some of the subjects covered. To tackle the uncertainty in Games, the analysis of games in which the payoffs are represented by fuzzy numbers (FN) will benefit from fuzzy set theory (FST).
The purpose of this paper is to develop an efficient technique for solving constraint matrix games (MG) with payoff trapezoidal fuzzy numbers (TFN). The description of the new ranking method is introduced for a constrained matrix with TFN and values. Stock market forecasting has been one of the most important research areas for decades. Stock market values are volatile, non-linear, complicated and ch
... Show MoreIn this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreDiabetic retinopathy is an eye disease, because of pressure in eye nerve fiber. It is a major cause of blindness in middle as well as older age groups; therefore it is essential to diagnose it earlier. Some of the challenges are in the diagnosis of the disease is detection edges of the image, may be some important edges are missed outcome the noise around the corners.
Wherefore, in order to reduce these effects in this paper, we proposed a new technique for edge detection using traditional operators in combination with fuzzy logic based on fuzzy inference system. The results show that the proposed fuzzy edge detection technique better than of traditional techniques, where vascular are markedly detected over the original.
The growth of social media is now utilized all over the world. In the past several years social media is used to communicate between person for information sharing and entertainment but now social media is also used for the hiring. This work collects data through questionnaire and online dataset on the recruitment process for three social media i.e. Facebook, Twitter, and LinkedIn. Pythagorean Fuzzy Relation (PFR) is an expansion of both Fuzzy Relationship and Fuzzy Intuitionist Relationship. The Pythagorean fuzzy set is a modern conceptual structure with greater capacity to deal with imprecision rooted in decision making. So we used this technique to identify a social media containing more number of positive respondents in recrui
... Show More