Cooling towers is one of the most important unit in industry, they are used to dispose heat from cooling media used in the integrated units. The choice of the cooling media plays recently an important rule due to fresh-water scarcity. The use of saline as a cooling media become of growing interest, but the corrosion problem has to be taken in consideration. In this study the simultaneous effect of cooling tower operation parameters on the corrosion rate of mild-steel is considered. The role of NaCl content is found to be pronounced more than the working solution temperature and flowrate. The corrosion of mild-steel in these studied factors had shown an interesting result especially with the NaCl% content. Firstly, there was an increase in the corrosion rate with increasing the salt content to 3.5% four times compared to that of 0%, but after a critical point (3.5%) the corrosion rate had been decreased to reach a level lower than that of pure water. While increasing the solution flowrate to 2.5 l/min and the temperature to 50°C will increase the corrosion rate by 25 and 20% respectively. From the results, it is obvious that the high concentration (>10%) of NaCl will inhibit the corrosion rate of mild-steel significantly and this prologue the gate to the use of saline instead of fresh water without hesitation
Objective(s): The present study aims at identifying the Iraqi Colleges of Nursing Deans' leadership
behaviors effectiveness and faculty members' motivation towards work in these colleges.
Methodology: Descriptive design has been used for the sample survey manner, which is the
appropriate approach to the study of social phenomena in the field where provides data on the reality of
these phenomena and relations between the causes and consequences and an analysis of it and perhaps
the factors affecting it and how it appears. The study relies on a questionnaire to collect data from the
participants which is composed of (86) items distributed on three axes: First, the demographic
characteristics which are composed of (8) i
Numerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k - model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750
... Show MoreAbstract
The current research aims to develop a guidance program suitable for high school students and apply it to them in order to ensure the reduction of addiction to the use of different means of communication. The researchers used the scale of addiction to the means of communication (SAS) to measure the level of addiction as well as to identify the impact of the proposed guidance program in reducing the degree of addiction to communication. It was applied to a sample of (20) female students divided equally into two groups: an experimental group of (10) female students and a control group of (10) female students from the secondary level in a school under the department of education in the education of the alma
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreIn this paper, three types of epoxy-based coatings (Polyamide, pure Polyamine, and Polyamine reinforced by glass-flake) used as a lining for potable water tanks were studied using experimental and finite element methods. Tensile, impact, and fatigue tests were conducted on uncoated and coated AISI 316 stainless steel. The test results show that the applied epoxy based coating improves the mechanical properties, increases of fatigue crack resistance, and enhance the dynamic fracture toughness. The fatigue crack propagation is influenced by the compositions of epoxy coating, and the glass-flake improves the coating resistance to fatigue crack propagation compared to other types.
The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested
... Show MoreThe effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure sug
Lithium–Manganese ferrites having the chemical formula (Li0.5-0.5x Mnx Fe2.5-0.5x O4), (0 ≤ x ≤ 1) were prepared by double sintering powder processing. The density of the ferrite increased with Mn content while the porosity was noticed to decrease. The dielectric constant was found to increase at high frequencies more rapidly than the low ones. The dielectric constant found to decrease with Mn content. The decrease in loss factor with frequency agreed with Deby’s type relaxation process. A maximum of dielectric loss factor was observed when the hopping frequency is equal to the external electric field frequency. Manganese substitution reduced the dielectric loss in ferrite. The variation of tanδ with frequency shows a similar na
... Show More
