Preferred Language
Articles
/
cxdwXJIBVTCNdQwCZ61o
Corrosion behavior of mild-steel in cooling towers using high salinity solution
...Show More Authors

Cooling towers is one of the most important unit in industry, they are used to dispose heat from cooling media used in the integrated units. The choice of the cooling media plays recently an important rule due to fresh-water scarcity. The use of saline as a cooling media become of growing interest, but the corrosion problem has to be taken in consideration. In this study the simultaneous effect of cooling tower operation parameters on the corrosion rate of mild-steel is considered. The role of NaCl content is found to be pronounced more than the working solution temperature and flowrate. The corrosion of mild-steel in these studied factors had shown an interesting result especially with the NaCl% content. Firstly, there was an increase in the corrosion rate with increasing the salt content to 3.5% four times compared to that of 0%, but after a critical point (3.5%) the corrosion rate had been decreased to reach a level lower than that of pure water. While increasing the solution flowrate to 2.5 l/min and the temperature to 50°C will increase the corrosion rate by 25 and 20% respectively. From the results, it is obvious that the high concentration (>10%) of NaCl will inhibit the corrosion rate of mild-steel significantly and this prologue the gate to the use of saline instead of fresh water without hesitation

Scopus Crossref
View Publication
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Mechanical Engineering
Corrosion Resistance Enhancement for Low Carbon Steel by Gas Phase Coating
...Show More Authors

Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Influence of Aging Heat Treatment on Pitting Corrosion Resistance of Martensitic Stainless Steel
...Show More Authors

In this research is to study the influence of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel (MSS), where a number of specimens from martensitic stainless steel were subjected to solution treatment at 1100 oC for one hour followed by water quenching then aging in the temperatures range (500-750) oC for different holding times (1,5,10,15&20) hr. Accelerated chemical corrosion test and immersion chemical corrosion test were performed on samples after heat treatment. The results of the research showed that the pitting corrosion resistance is significantly affected by the aging temperature. Where found that the aging samples at a temperature of 500 °C have the highest ra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modelling and Optimization of Carbon Steel Corrosion in CO2 Containing Oilfield Produced Water in Presence of HAc
...Show More Authors

Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Role of Carbon Dioxide on the Corrosion of Carbon Steel Reinforcing Bar in Simulating Concrete Electrolyte
...Show More Authors

The main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations;  0.03 to 2.0  weight percent, and the effect of rising electrolyte temperature was also followed  in the range 20 to 50 C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrochemical Behavior of Phosphotized Reinforcing Steel in Concrete in Presence of Sugar Can Ash
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Corrosion Inhibition Efficiency Investigation of Yttrium Oxide Nanoparticles Coated on Carbon Steel Alloy
...Show More Authors

Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Corrosion Behavior of V2AlC and Cr2AlC Compared with SS 316L in NaOH at Four Temperatures
...Show More Authors

Abstract

      This work involves the manufacturing of MAX phase materials include V2AlC and Cr2AlC using powder metallurgy as a new class of materials which characterized by regular crystals in lattice. Corrosion behavior of these materials was investigated by Potentiostat to estimate corrosion resistance and compared with the most resistant material represented by SS 316L. The experiments were carried out in 0.01N of NaOH solution at four temperatures in the range of 30–60oC. Polarization resistance values which calculated by Stern-Geary equation indicated that the MAX phase materials more resistant than SS 316L. Also cyclic polarization tests confirme

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Effect of Hydroxyapatite Coatings on Corrosion Behavior for Biotype 316L SS Used in Orthopaedic Applications
...Show More Authors

Electrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 31 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Evaluation of Sodium Chloride and Acidity Effect on Corrosion of Buried Carbon Steel Pipeline in Iraqi Soil
...Show More Authors

In this work, corrosion parameters were evaluated using potentiodynamic polarization curves. In order to determine corrosion parameters of potential and current density of the interesting metal, carbon steel, environmental conditions of external corrosion of buried carbon steel pipeline in Iraqi soil were prepared in the laboratory using simulated prepared conditions. Solutions of sodium chloride at different concentrations (300, 1100, 1900, 2700, and 3500 ppm) were used. pH of solution were acidic at pH =5, and alkaline at pH = 9. Laboratory conditions were similar to those of Iraqi soil where the pipelines were buried. Temperature was constant at 20 °C. Potentiodynamic polarization curves, of potential vs. log current density, were ob

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Influence of Temperature on Corrosion Inhibition of Carbon Steel in Air-Saturated 7NH3PO4 by Potassium Iodide
...Show More Authors

View Publication Preview PDF