In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
Abiotic stress-induced genes may lead to understand the response of plants and adaptability to salinity and drought stresses. Differential display reverse transcriptase – polymerase chain reaction (DDRT-PCR) was used to investigate the differences in gene expression between drought- and salinity-stressed plantlets of Ruta graveolens. Direct and stepwise exposures to drought- or salt-responsive genes were screened in R. graveolens plantlets using the DDRT technique. Gene expression was investigated both in the control and in the salt or drought-stressed plantlets and differential banding patterns with different molecular sizes were observed using the primers OPA-01 (646,770 and 983 pb), OPA-08 (593 and 988 pb), OPA-11 (674 and 831 pb
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreIn this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.
تقدم هذه الدراسة وصفا للطريقة المستخدمة في تحضير الكربون المنشط (AC)من بقايا الشاي. تم دراسة الخواص الفيزيائية والكيميائية وكفاءة الامتزاز للكربون المنشط المحضر. تم إنتاج الكربون المنشط (AC) على مرحلتين: الاولى التنشيط باستخدام حامض الفوسفوريك (H3PO4) والثانية الكربنة عند درجة حرارة 450 درجة مئوية. استخدم الكربون المنشط لغرض امتصاص العقار الدوائي السيبروفلوكساسين(CIP) . تمت دراسة عدة عوامل تشغيلية بدرجة حرار
... Show Moreتقدم هذه الدراسة وصفا للطريقة المستخدمة في تحضير الكربون المنشط (AC)من بقايا الشاي. تم دراسة الخواص الفيزيائية والكيميائية وكفاءة الامتزاز للكربون المنشط المحضر. تم إنتاج الكربون المنشط (AC) على مرحلتين: الاولى التنشيط باستخدام حامض الفوسفوريك (H3PO4) والثانية الكربنة عند درجة حرارة 450 درجة مئوية. استخدم الكربون المنشط لغرض امتصاص العقار الدوائي السيبروفلوكساسين(CIP) . تمت دراسة عدة عوامل تشغيلية بدرجة حرار
... Show MoreChlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo
... Show MoreIn this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.