In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance est
... Show MoreThis work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MoreA metal mandrel was designed for manufacturing the cathodes of high power electron tube ( Tetrode ) used in broadcasting transmitting tubes type TH558 and CQS200.The cathodes were manufactured in the present work from thoriated tungsten wires ( 2? ThO2- W) with different diameters .These cathodes were carbonized in sequences of processes to determine the carbonization parameters (temperature, pressure, time, current and voltage).Then the carbonized cathodes dimension were accurately measured to determine the deviation due to the high temperature distortion effect at about 1800°C .the distorted cathodes due to the carbonization process was treated when it was subjected inside the vacuum chamber and heat treated again .The carbonized cat
... Show MoreIn this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extra road) and
... Show MoreThe OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extr
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More