The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
المقدمة
الحمد لله رب العالمين، وأفضل السلام وأتم التسليم على سيدنا محمد، وعلى آله وصحبه، أجمعين، وعلى من تبعهم بإحسان إلى يوم الدين، أما بعد.
فإن مسألة التعارض بين الرواية، والفتوى، من المسائل المشهورة عند الأصوليين والفقهاء،وهي من مباحث السنة عند الأصوليين، والتي تبنى عليها مسائل متعددة، وهي من أسباب اختلاف الفقهاء، فإذا ما روى أحد الرواة حديثاً معيناً، ثم عمل بخلاف ما روى، فللعل
... Show MoreThe research aims at evaluating the illustrations images and determining the availability of good image standards in the illustrations images of the content of the second intermediate stage computer's book for the academic year (2019-2020) as seen by computer teachers. The sample was randomly selected, (30) teachers who are actually teaching the subject in schools within the geographical area of the province of Baghdad (Karkh III). To achieve this goal, ten standards were identified: scientific accuracy, suitability for the level of students, image clarity, image freshness, quality of coloring, suitability of its location of the subject, Matching their content glimpsed, The subject matter is appropriate in terms of area, matching its tit
... Show MoreThe study aims to follow modern methods in teaching rhythmic gymnastics skills by directing learners to develop their perceptions and absorb what the world deals with today and develop intelligence among learners, the researchers searched for the strengths of the learner by providing them with an opportunity to form their kinetic formation, hence the problem came by introducing a method of self-intelligence and social to guide the learner in the search for ways and solutions to overcome boredom and economy Time and effort in the educational process in learning and give them the freedom to express their ideas And their skills and here came the role of social and self-intelligence to teach the individual and collective kinetic formati
... Show MoreComputer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead
... Show MoreIn this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between ev
... Show MoreIn this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every
... Show More