In this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate for D-D transfer to Nickel-metal using the astrophysical S factors (S = 110KeV — barn) for d(d,p)T, d(d, n)3He reactions and (S = 110 × 106 and S = 110 × 1013KeV — barn) for D + D × 4He + 23.8MeV reaction. The results of the calculation for three reactions give rise a wide compatible with the other experimental works.
Abstract: To study the effect of nickel chloride on bone composition of mice, a number of biophysical and biochemical parameters have been made use. The animals were divided into control and experimental and further subdivided into three groups I, II and III according to the dose of nickel chloride (NiCl2) administered to them i.e. 5.8, 12.8 and 28.2 mg/kg body weight, respectively. Femur bones were obtained by sacrificing the animals three weeks after weaning them once a week. The percentage loss between the wet weight and dry weight of femur in control animals was found to be 32.5+1.5 .In the three experimental groups I,II and III, the percentage loss was 30.4+1.4, 35.3+2.3 and 38.9+2.2 respectively. The percentage loss between the wet we
... Show MoreCopper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.
In present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MoreA simple low-cost approach at various exposure times was utilized to generate cold plasma in the aim to fabricate AuNPs. UV-Visible spectra and X-ray diffraction were used to characterize the nanoparticles (XRD). Surface Plasmon resonance was observed in the synthesized AuNPs at 530, 540, and 533 nm. For all samples, the patterns of XRD show very intensive peaks implying the fcc crystalline structure of AuNPs. The average crystallite size of AuNPs is ranging between 20-30 nm. The observation of morphology by FESEM revealed the spherical formation of AuNPs. Doses of 100 and 200 ppm of AuNPs were adapted to investigate their effect on the blood-mixture with and without a 20-second of cold plasma exposure. The WBC components in the blood
... Show MoreIndustrial characteristics calculations concentrated on the physical properties for break down voltage in sf6, cf4 gases and their mixture with different concentrations are presented in our work. Calculations are achieved by using an improved modern code simulated on windows technique. Our results give rise to a compatible agreement with the other experimental published data.
At thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad
... Show More