Preferred Language
Articles
/
cxaiE4cBVTCNdQwCmjR_
Water quality assessment and sodium adsorption ratio prediction of Tigris River using artificial neural network
...Show More Authors

Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Using Water Quality Index to Assess Drinking Water For AL-Muthana Project
...Show More Authors

The water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not been met du

... Show More
Crossref (3)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Using Water Quality Index to Assess Drinking Water For AL-Muthana Project
...Show More Authors

The water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network
...Show More Authors

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Al-academy
Websites Quality Assessment of Iraqi Universities Using the WDQI Index
...Show More Authors

The Web Design Quality Index, known as WDQI, was applied to assess the quality of websites for six Iraqi universities, namely Basra University, Mosul, Muthanna, Samarra, Dijla University College, and Al-Isra University College. The results of the index showed that the universities of Basra and Dijla University College had the highest value, at 71.07 and 70.39, respectively. Its final evaluation metric was that the website of these two universities needed a slight improvement. As for the rest of the other universities, the final values of the index ranged from 64.72-69.71. When the final values of the index are displayed on the final evaluation scale, it appears that the websites of the four universities need many improvements. The study

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 11 2019
Journal Name
Journal Of The College Of Education For Women
The South Baghdad Electrical Station and its Environmental Impact on the Tigris River
...Show More Authors

The South Baghdad electrical station located on the eastern bank of the Tigris River south of Baghdad city was selected within the municipality of Karrada between  two  latitude ( 3315 , 33 0  18 )North  and  longitude ( 44 0  27 , 44 030 ) East . The purpose of the study is to determine the contribution of the station to the effect of pollution of the Tigris water by taking water samples at the station site and two sites, one before and the other after the station, distributed over time periods of three months between each sample of water and the beginning of August and November Shabat and Mayar and analyzed water samples physically, chemically and biologic

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Qualitative and Quantitative study of Epipelic algae in Tigris River within Baghdad City, Iraq
...Show More Authors

The present study conducted to study epipelic algae in the Tigris River within Baghdad city for one year from September 2011 to August 2012 due to the importance role of benthic algae in lotic ecosystems. Five sites have been chosen along the river. A total of 154 species of epipelic algae was recorded belongs to 45 genera, where Bacillariophyceae (Diatoms) was the dominant groups followed by Cyanophyceae and Chlorophyceae. The numbers of common types in three sites were 47 species. Bacillariophyceae accounted 88.31% of the total number of epipelic algae, followed by Cyanophyceae 7.14 % and Chlorophyceae 4.55%. A 85 species (29 genera) recorded in site 1, 103 species (34 genera) in site2, 112 species (35 genera) in site3, 96 species

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref