Numerical simulations are carried out to evaluate the coherence concept’s effect on the performance regarding the optical system, when observing and imaging the planet’s surface. In numerous optical approaches, the coherence qualities of light sources play an important role. This paper provides an overview about the mathematical formulation of temporal and spatial coherence and incoherence properties of light sources. The circular aperture was used to describe the optical system like a telescope. The simulation results show that diffraction-limited for incoherent imaging system certainly improves the image. Yet, the quality of the image is degraded by the light source's highly spatial and temporal coherence properties, resulting in a blurred image with certain parts unresolved, as well as destructive and constructive interference resulting in "ringing" features. When subjective fidelity criteria like PSNR, MSE, SNRrms, SR, R Closeness, and CORR are used to compare the resolution of incoherent and coherent imaging systems, incoherent imaging is often deemed to be "better”.
The autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.
In this paper a two dimensional numerical simulation have been applied using
MATLAB program for generating Fraunhofer diffraction pattern from different
apertures. This pattern is applied for three types of apertures, including, circular,
square, and rectangular functions, and it's could be generated any wavelength in the
visible light. The studying demonstrated the capability and the efficiency of optical
imaging systems to observe a point source at very long distance. The circular
aperture shows better results across the shape of Fraunhofer pattern and optical
transfer function (otf). Also, the minimum values of the normalized irradiance of
different diffracted apertures have been computed at different dimension
In this research, study the effect of sunspots on electromagnetic radio signals when it passed through F layer. The evaluation for this effect is carried out on radio Jove telescope frequency (20.1MHz) observations result. Radio emission for Jupiter storm burst observations over 11 years (1999-2009) from Hawaii, USA station (about 37611observations must be attended), are used in this research.
Two data limitations are applied on number of observation for Hawaii station, first due station location, second due to the reception of telescope antenna. The number of observations are reduced to 337 due to these limitation, but the actual number that be detected by station telescope is only 20.A model for ionospherical effect ,only due to sun
Coherent density fluctuation model (CDFM) has been used to calculate the
proton momentum distributions (PMD) and elastic electron scattering form factors,
F(q), of the ground state for some even mass nuclei of fp-shell, such as 52Cr, 58Fe and
64Ni nuclei. Both of the PMD and F(q) have been expressed in terms of the weight
function ( ( ) )
2
f x which is determined by means of the charge density
distributions (CDD) of the nuclei and determined from theory and experiment. The
feature of the long-tail behavior at high momentum region of the PMD’s has been
obtained by both the theoretical and experimental weight functions. The calculated
form factors of these nuclei are in reasonable agreement with those of th
Background: Joubert syndrome (JS) is a very rare autosomal recessive disorder characterized by agenesis of cerebellar vermis, abnormal eye movements, respiratory irregularities, and delayed generalized motor development. Retinal dystrophy and cystic kidneys may also be associated with this clinical syndrome. The importance of recognizing JS is related to the outcome and its potential complications. This syndrome is difficult to diagnose clinically because of its variable phenotype. Its neuroimaging hallmarks include the characteristic molar tooth sign and bat wing-shaped fourth ventricle
The present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1
... Show MoreThe structure and composition of the stellar population in the surface brightness galaxy Ic 467 is studied using BVR CCD photometry. The observations were obtained on the 1.88m optical telescope of Kottamia Astronomical Observatory, KAO, Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams and the surface brightness of the eastern arms in V filter is brighter than the western arm. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and color indices profiles are described and studied.
The presence of natural voids and fractures (weak zones) in subsurface gypsiferous soil and gypsum, within the University of Al-Anbar, western Iraq. It causes a harsher problem for civil engineering projects. Electrical resistivity technique is applied as an economic decipher for investigation underground weak zones. The inverse models of the Dipole-dipole and Pole-dipole arrays with aspacing of 2 m and an n-factor of 6 clearly show that the resistivity contrast between the anomalous part of the weak zone and the background. The maximum thickness and shape are well defined from 2D imaging with Dipole-dipole array, the maximum thickness ranges between 9.5 to 11.5 m. It is concluded that the 2D imaging survey is a useful technique and more
... Show More