Using an environmentally friendly chemical process, a novel nanocomposite consisting of reduced graphene oxide (rGO) and silver(I) oxide (Ag2O) nanoparticles was successfully synthesized in this work, and its optical properties along with photoelectric performance were investigated. Ag2O is a narrow-bandgap p-type semiconductor with strong visible light response but exhibits poor carrier separation and structural instability during exposure to radiation. In order to overcome shortcomings encountered with Ag2O, rGO was used as a conductive support to produce rGO@Ag2O nanocomposites with improved electronic interactions. Various characterization tests, including energy-dispersive X-ray spectroscopy (EDXS), field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectroscopy, were adopted to analyze the morphological and structural features of the synthesized materials. The results confirmed that rGO, Ag, and Ag2O coexist in the hybrid structure where nanoparticles are uniformly dispersed. The optical properties were evaluated using photoluminescence (PL) and UV–Vis spectroscopy analyses. The findings showed that, compared to the pristine Ag2O and rGO, the rGO@Ag2O composite has a smaller optical band gap (5.73 eV), which allows for more efficient electron transfer. In current–voltage (J–V) measurements used to assess the photoelectric performance, the nanocomposite also showed a significantly higher current density, which was attributed to the synergistic effect of rGO and Ag2O enhancing charge transfer and separation. The addition of rGO reduced the recombination loss while also improved electron mobility and light absorption. Our findings show that rGO@AgO nanocomposites are promising as next-generation optoelectronic materials for photocatalytic systems, photodetectors, and solar energy harvesting. The green synthesis method supports the potential of this material for further scalable and sustainable technology integration.
In this paper, CdS/Si hetrojunction solar cell has been made by
Chemical Bath Deposition (CBD) of CdS thin film on to
monocrystalline silicon substrate. XRD measurements approved that
CdS film is changing the structure of CdS films from mixed
hexagonal and cubic phase to the hexagonal phase with [101]
predominant orientation. I-V characterization of the hetrojunction
shows good rectification, with high spectral responsivity of 0.41
A/W, quantum efficiency 90%,and specific detectivity 2.9*1014
cmHz1/2W -1 .
Schiff base of chitosan with Para-Dimethyl aminobenzaldehyde /PVA-Ag Nanocomposite have been prepared as antimicrobial polymer. The prepared chitosan Schiff base and chitosan Schiff base / PVA-Ag nanocomposite were characterized by FT-IR, SEM analysis and biological activity. The nanocomposite showed good activity against different types of bacteria.
Flurbiprofen (FLB) is chemically 2-(3- fluoro-4-phenyl phenyl) propanoic acid. It is a nonsteroidal anti-inflammatory drug (NSAID) used in the treatment of rheumatoid arthritis and osteoarthritis. Oral administration of this drug is associated with severe gastrointestinal side effects like ulceration and gastrointestinal bleeding. The solution to this problem lies in the fact that topically applied NSAIDs are safer than orally. This study aims to prepare different topical semisolid formulation of FLB as cream base (o/w), (w/o) and gel base using different gel-forming agents in different concentrations. Comparing characterization properties in addition to release and diffusion study for all the prepared formulas to select the best on
... Show MoreObjective: Econazole nitrate (ECZ) is one of the triazole antifungal drugs with poor aqueous solubility and dissolution rate; there is a need for enhancement of solubility. Therefore; inclusion complexation with β cyclodextrin (βCD) was performed. Methods: In this study kneading method and co-evaporation method of preparation of inclusion complex between βCD and ECZ using two molar ratios of βCD. The solubility of these complexes in isotonic saline solution and distilled water was studied. Complexes prepared by kneading method were used for the preparation of different ophthalmic gel formulas using carbomer (CB) and sodium carboxymethylcellulose (sod CMC) as a gelling agent. The release profile and the rheological behaviour of the gel w
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreThe present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show MoreThe composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.
priorities of materials research due to their promising properties, especially in the field of thermoelectricity. The efficiency or performance of thermoelectric devices is expressed in terms of the thermoelectric figure-of-merit (ZT) – a standard indicator of a material’s thermoelectric properties for use in cooling systems. The evaluation of ZT is principally determined by the thermoelectric characteristics of the nanomaterials. In this paper, a set of investigative computations was performed to study the thermoelectric properties of monolayer TMDCs according to the semiclassical treatment of the Boltzmann transport equation. It was confirmed that the thermoelectric properties of 2D materials can be greatly improved compared with thei
... Show MoreLactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical c
... Show More