The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of this paper is to suggest a new hybrid estimator obtained by an ad-hoc algorithm which relies on data driven strategy that overcomes outliers. While the minor goal is to introduce a new employment of an unweighted estimation method named "winsorization" which is a good method to get robustness in regression estimation via special technique to reduce the effect of the outliers. Another specific contribution in this paper is to suggest employing "Kernel" function as a new weight (in the scope of the researcher's knowledge).Moreover, two weighted estimations are based on robust weight functions named "Cauchy" and "Talworth". Simulations have been constructed with contamination levels (0%, 5%, and 10%) which associated with sample sizes (n=40,100). Real data application showed the superior performance of the suggested method compared with other methods using RMSE and R2 criteria.
Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreIn this paper we present the theoretical foundation of forward error analysis of numerical algorithms under;• Approximations in "built-in" functions.• Rounding errors in arithmetic floating-point operations.• Perturbations of data.The error analysis is based on linearization method. The fundamental tools of the forward error analysis are system of linear absolute and relative a prior and a posteriori error equations and associated condition numbers constituting optimal of possible cumulative round – off errors. The condition numbers enable simple general, quantitative bounds definitions of numerical stability. The theoretical results have been applied a Gaussian elimination, and have proved to be very effective means of both a prior
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreSteganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreOne of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreThis research aims to choose the appropriate probability distribution to the reliability analysis for an item through collected data for operating and stoppage time of the case study.
Appropriate choice for .probability distribution is when the data look to be on or close the form fitting line for probability plot and test the data for goodness of fit .
Minitab’s 17 software was used for this purpose after arranging collected data and setting it in the the program.
&nb
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreThis study aims to find out the effectiveness of instructional scaffolding strategy in the development of academic achievement and critical thinking of female second grade secondary mathematics students. Semi-experimental and relational descriptive method was used. The sample of the study consisted of (50) students divided into an experimental group and a control group. The experimental group was taught using scaffolding strategy whereas the control group was taught using traditional method. Pre- and Post-tests were used to achieve the objective of the study. The results of the study revealed that there are statistically significant differences in the mean scores of the experimental and control groups in the posttest for both the academi
... Show More