The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of this paper is to suggest a new hybrid estimator obtained by an ad-hoc algorithm which relies on data driven strategy that overcomes outliers. While the minor goal is to introduce a new employment of an unweighted estimation method named "winsorization" which is a good method to get robustness in regression estimation via special technique to reduce the effect of the outliers. Another specific contribution in this paper is to suggest employing "Kernel" function as a new weight (in the scope of the researcher's knowledge).Moreover, two weighted estimations are based on robust weight functions named "Cauchy" and "Talworth". Simulations have been constructed with contamination levels (0%, 5%, and 10%) which associated with sample sizes (n=40,100). Real data application showed the superior performance of the suggested method compared with other methods using RMSE and R2 criteria.
A digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation.
... Show MoreIn this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.
Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreObject tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreIntroduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreThe Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show More