Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
This study was conducted to assess the hydrocarbon degradation abilities of Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae, which isolated from diesel contaminated soil samples. Single strains and mixed bacterial consortia have been investigated their ability to degrade 1.0 % (v/v) of diesel oil in Bushnell- Haas medium as sole.carbon.and.energy.source. At temperature 30∘C, the individual.bacterial.isolates exhibited low growth and low degradation.than did the.mixed. bacterial.culture. After 28 days.of incubation the.combination.of four isolates degraded.an upper limit.of diesel 88.4%. This was. continued.by 85.1% by S. paucimobilis, 84 % by Pentoae sp., 79% by S.aureus, and
... Show MoreThis work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
An oral bi layer sustained release (SR) strips of Sodium Montelukast SMLT , which is selective leukotriene antagonist , used for patients suffered from mid-night asthma , were prepared successfully ,using different polymers, like guar gum , carrageenan , and xanthan gum , by solvent casting method .
The results obtained by this study revealed ,that best fast dissolving film of SMLT was loaded in carrageenan polymer 57% w\w (30mg.) , with acceptable physical properties, like film thickness , elastic endurance and surface pH .
Besides to that , the disintegration t
... Show MoreBackground : It had been indentified by histological, histochemical and morphometrical studies that peganum harmala is a mammogenic herb and borage officinalis is a lactogenic one . To complete our investigation about these two herbs , we performed electron microscopical study . Materials and methods : Rats were grouped according to their physiological status into three groups . Each group was subdivided in to three subgroups : one control and two experimental . The two experimental group were treated daily; the 1st one with an aqueous extract of peganum harmala seeds and the 2nd with an aqueous extract of borage officinalis flowers . After two weeks of treatment , mammary glands were employed for electron microscopical study . Resu
... Show Morestructural and electrical of CuIn (Sex Te1-x)2
This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms. A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and (iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The mode decomposition results are also compared using
... Show MorePolymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.
Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro
... Show MoreBackground and objective: Viral Hepatitis Type B&C is serious public health challenge throughout the world.Hepatitis B and C viruses still remain to be the major causes of chronic hepatitis.It is estimated that around 350-400 million people in the world are chronic carriers of HBV, which represents approximately 7% of the total populationwhereas infection with HCV is found in approximately 3% of the world population, which represents 160 million people. Hepatitis B infection has a wide range of seroprevalence in the Mediterranean countries ranging from intermediate (=>2% ) to high prevalence ( =>7%). World Health Organization estimated a prevalence rate for HCV infection of about 4.6% in Eastern Mediterranean in 1999. During the eightieths
... Show MoreThe synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
This research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.