Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.
This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista

Background: The base of the denture is largely responsible for providing the prosthesis with retention, stability, and support by being closely adapted to the oral mucosa. However; the process of bone resorption is irreversible and may lead to an inadequate fit of the prosthesis; this can be overcome by relining. Materials and methods: Acrylic based soft denture liner is prepared by preparing polymer from purified methylmethacrylate monomer with (10-2) initiator and (30%) dibutylphthalate plasticizer concentrations. Biological properties were evaluated in comparison with the control material through subcutaneous specimens' implantation in the New Zealand rabbits. Excisional biopsies were taken after (1, 3, days 1, 2, 3, 4 weeks) period. Mic
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
This work consists of a numerical simulation to predict the velocity and temperature distributions, and an experimental work to visualize the air flow in a room model. The numerical work is based on non-isothermal, incompressible, three dimensional, k turbulence model, and solved using a computational fluid dynamic (CFD) approach, involving finite volume technique to solve continuity, momentum and energy equations, that governs the room’s turbulent flow domain. The experimental study was performed using (1/5) scaled room model of the actual dimensions of the room to simulate room air flow and visualize the flow pattern using smoke generated from burnt herbs and collected in a smoke generator to delivered through
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
Al-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed th
... Show More