Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreThe theme of causal attribution has generated a great deal of work and focuses on the factors to which people attribute their behavior. However, its use to explain the results of the evaluation and the support for the regulation of teaching and learning acts has rarely been raised. Indeed, in the evaluation act, which is a privileged moment for reframing the learning process, teachers attribute the results obtained to the student himself, without worrying about the factors to which the student attribute itself these failures. This can distort the regulatory process and increase failure factors. The teacher's attributions of failure often relate to the results of the evaluations and are often explained by factors external to him: such as
... Show MoreIn this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape struct
... Show MoreThe efficient behavior of a low-concentrating photovoltaic-thermal system with a micro-jet channel (LCPV/T-JET) and booster mirror reflector is experimentally evaluated here. Micro-jets promote the thermal management of PV solar cells by implementing jet water as active cooling, which is still in the early stages of development. The booster mirror reflector concentrates solar irradiance into solar cells and improves the thermal, electrical, and combined efficiencies of the LCPV/T-JET system. The LCPV/T-JET system was tested under ambient weather conditions in the city of Bangi, Selangor, Malaysia, and all data was recorded between 10:00 a.m. and 4:00 p.m. Parametric studies were conducted to compare the performance of the LCPV/T-JET system
... Show MoreNonlinear diffraction pattern can be induced by focusing CW
laser into a thin quartzes cuvette containing nanofluid. The number
of revealed pattern rings indicates to the nonlinear behavior of fluid.
Here, the nonlinear refractive index of each of functionalized single
wall carbon nanotube (F-SWCNTs) suspention and multi wall carbon
nanotube (F-MWCNTs) suspention have been investigated
experimentally .Each of CNTs suspention was at volume fraction of
13×10−5 and 6×10−5. Moreover the laser source at wavelength of
473 nm was used. The results show that SWCNTs suspention
possesses higher nonlinearty than other at the same volume fraction
Ytterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the e
Crude oil is one of the most important sources of energy in the world. To extract its multiple components, we need oil refineries. Refineries consist of multiple parts, including heat exchangers, furnaces, and others. It is known that one of the initial operations in the refineries is the process of gradually raising the temperature of crude oil to 370 degrees centigrade or higher. Hence, in this investigation the focus is on the furnaces and the corrosion in their tubes. The investigation was accomplished by reading the thickness of the tubes for the period from 2008 to 2020 with a test in every two year, had passed from their introduction into the work. Where the thickness of more than one point was measured on each tube in the sa
... Show MoreOver the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities