The implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of surfactant-nanoparticles, salt-nanoparticles, and surfactant-salt-nanoparticles on γ reduction and the critical micelle concentration of the surfactants have been investigated. Extensive series of experiments for γ and CMC measurements were performed. The optimum condition for each formulation is shown. We conclude that nanoparticles-surfactant can significantly reduce γ if correctly formulated.
The principal forms of radiation dosage for humans from spontaneous radiation material are being recognized as radon and its progenitors in the interior environment. Radiation-related health risks are caused by radon in water supply, which can be inhaled or ingested. Materials and Methods: The solid-state CR-39 nuclear trace detectors method was using in this research for measuring accumulation of radioactivity in water supply in different locations of Iraq's southwest corner of Baghdad. In Baghdad district, 42 samples were selected from 14 regions (3 samples out of each region) and put in dosimeters for 50 days. Results: The mean radon concentration was 49.75 Bq/m3, that is lower than the internationally recognized limit of 1100 Bq /m3. Th
... Show MoreThe application of ultrafiltration (UF) and nanofiltration (NF) processes in the handling of raw produced water have been investigated in the present study. Experiments of both ultrafiltration and nanofiltration processes are performed in a laboratory unit, which is operated in a cross-flow pattern. Various types of hollow fiber membranes were utilized in this study such as poly vinyl chloride (PVC) UF membrane, two different polyether sulfone (PES) NF membranes, and poly phenyl sulfone PPSU NF membrane. It was found that the turbidity of the treated water is higher than 95 % by using UF and NF membranes. The chemical oxygen demand COD (160 mg/l) and Oil content (26.8 mg/l) were found after treatment according to the allowable limits set
... Show MoreProduced water is accompanied with the production of oil and gas especially at the fields producing by water drive or water injection. The quantity of these waters is expected to be more complicated problem with an increasing in water cut which is expected to be 3-8 barrels water/produced barrel oil.Produced water may contain many constituents based on what is present in the subsurface at a particular location. Produced water contains dissolved solids and hydrocarbons (dissolved and suspended) and oxygen depletion. The most common dissolved solid is salt with concentrations range between a few parts per thousand to hundreds parts per thousand. In addition to salt, many produced waters also contain high levels of heavy metals like zinc, bari
... Show MoreThe transfer of chemical pollutants from bottled water into water due to heat, sunlight and poor storage is one of the most serious threats to human health around the world, the objective of this study was to estimate the pH value and the transport of heavy metals from plastic bottles to water, for this purpose, 30 bottles of water for 10 local brands were collected and divided into three groups, the first was left at room temperature 25°C, The second was placed in a heat oven at 25°C and the third in another oven at 50°C for two weeks. The results showed significant differences at (P<0.05) between water samples, pH value and concentrations of heavy metals (Sb, Pb, Ni, Cu, Cr, Cd and Fe) we
... Show More
Abstract
Oil is the most important natural resources in Iraq and represents the goal to others as well as Iraqi people. It is gift from God to all Iraqi people now and future. So we must maintain it and invest its revenue that achieve development in country and ensure the next generations' rights in it without external costs or negative externalities from extracted and invested it.
The most problems that we attempt to solve by this research are the exhausted, environmental degradation and theft from next generation that produced with oil contracts between Iraq and foreign companies. From here was th
... Show MoreIraq has the distinction of being a great potential of non-renewable natural resources,
especially crude oil and natural gas. Since the discovery of crude oil at the beginning of the
twentieth century in Iraq. Although the different of investment types, it contributed to the oil
sector in the provision of financial resources to the state treasury , since that date until the
present time.
Search has been marked by division ((The foreign investment in the oil sector in Iraq after
2003)) into three sections. The first section included a brief history of the development of
Iraq's oil potential in terms of oil reserves, and oil fields, and the quantities of production and
export. The second section reviewed the investm
The research aims to present a proposed strategy for the North Oil Company, and the proposed strategy took into account the surrounding environmental conditions and adopted in its formulation on the basis and scientific steps that are comprehensive and realistic, as it covered the main activities of the company (production and exploration activities, refining and refining activities, export and transport of oil, research and development activity, financial activity, information technology, human resources) and the (David) model has been adopted in the environmental analysis of the factors that have been diagnosed according to a
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for anal
... Show More