The implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of surfactant-nanoparticles, salt-nanoparticles, and surfactant-salt-nanoparticles on γ reduction and the critical micelle concentration of the surfactants have been investigated. Extensive series of experiments for γ and CMC measurements were performed. The optimum condition for each formulation is shown. We conclude that nanoparticles-surfactant can significantly reduce γ if correctly formulated.
This investigation pertains to the evaluation of water quality in SAWA Lake, located in the Al-Muthanna province of Southern Iraq, from 1977 to 2020. Understanding the water quality and assessments of this Lake is of great importance. The Lake is home to small, transparent, blind fish measuring approximately 10 cm and is often referred to as the "wonderful" or "strange" Lake due to its many unique features. The study focuses on several elements to represent water quality, including total dissolved solids (TDS), electrical conductivity (EC), pH, and temperature (T), which were measured directly in the field. Additionally, scientific concepts such as K+, Ca2+, Cl-, HCO
Two field experimسents were conducted in one of the fields of the Agriculture Division of Ain Al-Tamr /Holy Karbala Governorate at two sites of different textures during the agricultural season 2020/2021. The first site has sandy loam texture (gypsum soils). The second site has loamy sand texture (calcareous soils). The factors of the study included: The first factor included two types of soil, gypsum and calcareous soil. The second factor is the tillage systems (no-tillage, spring spike harrows, disc harrows, and mold board plow). The experiment was designed in the two study sites according to the RCBD with three replications. The Valley type center pivot irrigation system was evaluated before planting, three speeds, 30, 50 and 100% of th
... Show MoreA fixed callus weight of 150 mg was induced from immature embryos of three bread wheat Triticum aestivum L. genotypes (Tamos 2, El-izz and Mutant 1) cultured on nutrient medium {MS) containing Polyethylene glycol (PEG-6000) supplemented with concentrations (0.0, 3.0, 6.0, 9.0 or 12.0%) to evaluate their tolerance to water stress. Cultures were incubated in darkness at temperature of 25?1 ?C. Callus fresh and dry weights were recorded and soluble Carbohydrate and the amino acid Proline concentrations were determined. Results showed that there were significant differences in studied parameters among bread wheat genotypes of which Tamos 2 was higher in callus average fresh and dry weights which gave 353.33 and 38.46 mg/cultured tube respecti
... Show MoreAn experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
Water supply and distribution networks play an important role in our daily activities. They make a substantial contribution to public health by providing potable water for public consumption and non-potable applications such as firefighters and other purposes such as irrigation. This study used ArcMap 10.8 and WaterGEMS CONNECT Edition update 1 version to create a hydraulic network model to simulate the pipes’ network. Detailed network information, including pipe lengths, layouts, and diameters, was given by the Baghdad Water Department. The TUF-2000H Handheld digital ultrasonic flow meter has been used to measure the water flows in the network’s source nodes. In eight junctions,
In the present study ten samples of bottled water from Baghdad conservative were taken to measure the concentration of radon gas by using nuclear track detector LR-115.The result obtained are varying from(0.033)to(0.007)pCi.l-1and these values are very low than the allowed limits (5) pCi.l-1, and specific activity from bottled water has been calculated which was vary from (0.00027)to(0.00126) Bq.l-1 and these values are very low than allowed limits (0.0123) Bq.l-1 that mean the bottled water was treated with good treatment to decrease the side effect of radon
The Early-Middle Miocene succession in Iraq is represented by the Serikagni, Euphrates and Dhiban formations, which deposited during the Early Miocene. The Jeribe and Fatha successions were deposited during Middle Miocene age. This study includes microfacies analysis, depositional environments, sequence stratigraphy and basin development of Early – middle Miocene in Hamrin and Ajeel oil fields and Mansuriyha Gas Field. The study area includes four boreholes in three oil fields located in central Iraq: Hamrin (Hr-2) and Ajeel (Aj-13, and 19) oil feilds, and Mansuriyha (Ms-2) Gas Field. Five facies associations were distinguished within the studied fields: deep marine, slop, platform-margin, open marine, restricted interior platform
... Show MoreIn the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun
... Show More