The aim of this research was to estimate the production function to measure returns to scale and distribution efficiency of resources used in the production of wheat. Cross sectional data used of a random sample of 130 farmers in Dhi Qar Province. The results of the quantitative analysis of estimating production function showed that the double logarithmic form was the best estimated model based on economic and statistical indicators. However, that form suffered from heteroscedasticity and autocorrelation, so the robust regression technique was chosen. Value of returns to scale was 0.89 and this indicates decreasing returns to scale. This means that production function is in the second stage of the function. The results of the distributional efficiency study showed that the resources used in the production of the crop were not optimized as they amounted to 1.28 for the human labor resource and 20.6 for the capital. There was a shortage in the use of labor resource and capital for the optimal use that achieves economic efficiency and this caused low efficiency of crop production. Therefore, the research recommends the need to increase the amount of human labor in the wheat crop farms in Dhi Qar province, which would move the production function curve to a higher level in order to achieve the economic efficiency of the crop cultivation in the province on the one hand and return the farmers to production in the rational stage. Also, it is important to have the proper allocation of resources available by farmers, which has the effect of increasing the economic efficiency of those resources, which will in turn reflects on the efficiency of crop production.
The subject of demand on oil derivative has occupied an important position at present time in the daily life context. The fuel of benzene and gas oil and kerosene is one of basic elements of that concern, and on local , regional and international levels. The oil derivatives have played a leading role in determining the course and nature of development since early 1970 to the present time whether in the productive Arab countries or the importing. The researcher set out from the hypothesis that the increase of the local consumer demand on some of the oil derivatives is because of the internal and external factors accompanied by the inability of the productive capability and local production to confront this increase, and the resort
... Show MoreIn this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreThis study includes the application of non-parametric methods in estimating the conditional survival function of the Beran method using both the Nadaraya-Waston and the Priestley-chao weights and using data for Interval censored and Right censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy Considering age is continuous variable, through using (MATLAB) use of the (MSE) To compare weights The results showed a superior weight (Nadaraya-Waston) in estimating the survival function and condition of Both for chemotherapy and radiation therapy.
In this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
The efficient behavior of a low-concentrating photovoltaic-thermal system with a micro-jet channel (LCPV/T-JET) and booster mirror reflector is experimentally evaluated here. Micro-jets promote the thermal management of PV solar cells by implementing jet water as active cooling, which is still in the early stages of development. The booster mirror reflector concentrates solar irradiance into solar cells and improves the thermal, electrical, and combined efficiencies of the LCPV/T-JET system. The LCPV/T-JET system was tested under ambient weather conditions in the city of Bangi, Selangor, Malaysia, and all data was recorded between 10:00 a.m. and 4:00 p.m. Parametric studies were conducted to compare the performance of the LCPV/T-JET system
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
Pots experiment was conducted in the green house of Biology Department, College of Education ( Ibn-AL-Haithum), University of Baghdad , during the growing season of 2005-2006 , to study the effect of five levels of urea fertilizer (0,50,100,150and 200) mg/pot in on vegetative growth of one wheat cultivar (Adanania) upon randomized complete block design with four replications. The results showed that significant difference between urea fertilizer levels above in vegetative growth characteristics ( plant height , leaf area , chlorophyll content, dry matter weight , relative efficiency and relative yield ) It was also showed that 200 mg/pot level was superior to urea fertilizer levels others in above charac
... Show More