Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the reactant solutions that were used is in close agreement with the elemental analysis that was obtained from EDX showing that the composition was as expected. Manganese ferrite showed a decrease in magnetic parameters on magnesium doping, which was further enhanced in (Ni,Co)xMn0.25-xMg0.75Fe2O4 nanoparticles upon replacement of nonmagnetic manganese ions for nickel and cobalt ions. Results indicated that Ni-Co-Mn-Mg ferrite nanoparticles’ crystal morphology, structural, and magnetic properties were significantly influenced by the amounts of nickel and cobalt content.
New Schiff base [3-(3-acetylthioureido)pyrazine-2-carboxylic acid][L] has been prepared through 2 stages, the chloro acetyl chloride has been reacting with the ammonium thiocyanate in the initial phase for producing precursor [A], after that [A] has been reacting with the 3-amino pyrazine-2-carboxilic acid to provide a novel bidentate ligand [L], such ligand [L] has been reacting with certain metal ions in the Mn(II), VO(II), Ni(II), Co(II), Zn(II), Cu(II), Hg(II), and Cd(II) for providing series of new metal complexes regarding general molecular formula [M(L)2XY], in which; VO(II); X=SO4,Y=0, Co(II), Mn(II), Cu(II), Ni(II), Cd(II), Zn(II), and Hg(II); Y=Cl, X=Cl. Also, all the compounds were characterized through spectroscopic techniques [
... Show MoreIt was aimed to investigate the compressibility, compactibility, powder flow and tablet disintegration of a new excipient comprising magnesium (Mg) silicate co-processed (5%–85% w/w) onto chitin, microcrystalline cellulose (MCC) and starch as the hydrophilic polymers of interest. Initially, the mechanism of tablet disintegration was studied by measuring water infiltration rate, moisture sorption, swelling capacity and hydration ability. Moreover, the powders compression behavior was carried out by applying Kawakita model of compression analysis in addition to porosity and radial tensile strength measurements. In vitro drug release of compacts made of 400 mg ibuprofen and 300 mg of the hydrophilic polymers containing 30% w/w Mg silicat
... Show MoreABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreThe important aspect of this unconventional approach is that eco-friendly, commercially available and straight forward method was used to prepared Silver Nanoparticles by using AgNO3 and curcumin solution as agent factor. The (TEM), (XRD), and (FTIR) was used to characterise these silver nanoparticles (AgNPs). Two types of bacterial isolates were used to indicate the antibacterial activity silver nanoparticles which prepared by curcumin solution, Gram negative like (Escherichia Coli E. Coli), & Gram positive (Stapha Urous). The results exhibit that silver nanoparticles synthesized by curcumin solution has effective antibacterial activities.
New series of Schiff bases 2(a-j) and corresponding beta-lactam derivatives 3(a-j) were synthesized from cefalexin (1) as starting material. The compound (1) was reacted with different aldehydes and ketones to give Schiff bases derivatives 2(a-j). The synthesized Schiff bases were cyclized by chloroacetyl chloride in the presence of triethylamine to form beta-lactam derivatives 3(a-j). The compounds were characterized by deremination melting point, FT-IR and 1H NMR. The beta-lactam derivatives were screened in vitro antibacterial against some bacterial species
This work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], thereaction of this compound with theiosemicarbazide ledto produce a new carbothioamide compound [V], Which was reacted with ethyl chloro acetate to yield thethioxoimidazolidin compound [VI]. The condensation reaction of this compound with different substituted aldehyde give new alkene derivatives[VII]a-d. The synthesized compounds were characterized by melting points , FT-IR ,1H-NMR and Mass spectroscopy .
Novel heterocyclic polyimide 5(a,b) have been synthesized based on polyacrylic backbone. The synthetic route start with nucleophilic substitution of 2-amino, or 4-amino, pyridine 1(a,b) to the polyacryloyl chloride afforded poly substituted amide 2(a,b). Another nucleophilic substitution were carried with adipoyl chloride to form polyimide chloride 3(a,b). Treatment of 3(a,b) with hydrazine hydrate afforded acid hydrazide polyimide 4(a,b), which upon cyclocondensation with carbon disulfide gave the target heterocyclic polyimide. The synthesized compounds were identified by spectroscopic methods: FT-IR, 1H-NMR and 13C-NMR.
Activated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show More